IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 2, FEBRUARY 1985

131

An Algorithm to Derive the Complement of a
Binary Function with Multiple-Valued Inputs

TSUTOMU SASAO, MEMBER, IEEE

Abstract — A recursive algorithm to obtain a complement of a
sum-of-products expression for a binary function with p-valued
inputs is presented. It produces at most p"/2 products for
n-variable functions, whereas a conventional elementary algo-
rithm produces 0" - n*™"%) products where t = 2 — 1. It is
10-20 times faster than the elementary one when p = 2 and
n = 8. For large practical problems, it produces many fewer
products than the disjoint sharp algorithm used by MINI. Appli-
cations of the algorithm to PLA minimization are also presented.

Index Terms — Complement of logical expression, logic design,
minimization of logical expressions, multiple valued logic, prime
implicants, programmable logic array, switching theory.

I. INTRODUCTION

S an elementary method to produce the complement of

a sum-of-products expression & as a sum-of-products
expression, Algorithm 2.1 described in Section II is well
known. However, this method becomes quite inefficient
when the number of input variables is large because it
produces all the prime implicants of %. For example, the
elementary method generates O(3"/n) products for a class of
n-variable switching functions (two-valued input binary
functions) [1], whereas the algorithm presented in this paper
will generate at most 2" ' products. The new algorithm is
about 10-20 times faster than the elementary one for switch-
ing function of 8 variables.

A binary function with multiple-valued inputs is useful in
designing programmable logic arrays with decoders [2], [3]
and other circuits [4]. Itis a mapping F: X [, P; — B where
P={0,1,--+,p; — 1} and B = {0, 1}. When P, = {0, 1}
fori = 1,2, -+ ,n, F is an ordinary switching function, in
other words, a binary function with two-valued inputs. As is
well known, a minimum sum-of-products expression for a
switching function corresponds to a minimum two-level
AND-OR network, or a minimum standard PLA [3] (a standard
PLA is also called a two-level PLA [2]). When p;, = 2 for
i = 1,2,-+-,n wheret = 2, F represents a PLA with 7-bit
decoders [2] (which is also called a decoded PLA [3]), and a
minimum sum-of-products expression for F corresponds to a
minimum PLA with #-bit decoders.

A binary function with multiple-valued inputs can also
represent a multiple-output function. Consider a set of m

Manuscript received August 2, 1983; revised March 22, 1984 and

July 18, 1984.
The author is with the Department of Electronic Engineering, Osaka Univer-
sity, Osaka 565, Japan.

0018-9340/85/0200-0131501.00

switching functions

Tty Xy ¥ 5 5,)
Rl s mnym)
Tl Xyt 5 2)
Define a binary function F(x,,x,, " - ", x,,y) such that
Flxy, 25k, v) s f 00050 %)
where
y=0,1,---, and m — 1.

Then F represents all f, f1, - - -, f.—, and consequently a stan-
dard PLA with n inputs and m outputs [14]. Note that the
variable y takes m different values. Functions for multiple-
output PLA’s with decoders can be defined similarly, and in
this case the inputs x; , x;,, "+, x; of each decoder can be
regarded as an input X; = (x;,x;,, " * -, x;) whose values are
(0;0,24250); (Q,; 05 vx ;1) prmmgrand 1 1y i 1)

Most programs for PLA minimization require checking
whether or not a product ¢ is an implicant of a function a large
number of times. This can be efficiently done by examining
whether ¢ + F = 0 or not. A fast complementation algorithm
which produces as few products as possible has been desired
because some PLA minimization algorithms such as MINI [5]
and Espresso [6] use the complement of the given function at
the initial stage of minimization. In MINI and Espresso, the
required memory size primarily depends on the number of
products in the given expression and its complement. The
disjoint sharp algorithm used in MINI often requires an ex-
cessive memory space in computing the complement, and
accordingly the initial phase of the minimization cannot be
completed. The algorithm proposed in this paper will pro-
duce many fewer products than the disjoint sharp algorithm
in a comparable computation time. It has been now incorpo-
rated into MINI and other systems and has been effectively
used to design logical networks.

II. AN ELEMENTARY METHOD FOR COMPLEMENTATION

Let us define some concepts in multiple-valued logic.

Definition 2.1: Let X, be a variable which takes any value
intheset P = {0,1,---,p; — 1}. X3 is a literal of X, when
S; C P.. X{' represents a function such that

© 1985 IEEE

o L {0 ifX; & S

1 if X, € §;

where §; C P,.

Definition 2.2: A product of literals X{' - X$ - - X3 is
called a product. A sum of products is called a sum-of-
products expression.

When S; = P., a literal X¥ denotes the constant | function
and may be deleted from the product.

Theorem 2.1 [2]: An arbitrary function can be repre-
sented by a sum-of-products expression

an) = \/

(5).52.7 " .8,

FX, Xy, " :IX-?I. . X‘gl - -Xin
where §; C P.

From here, F (a capital letter) represents a binary func-
tion and ¥ (a script letter) represents its sum-of-products
expression.

Definition 2.3: Let E be a product. If F is equal to one
whenever E is equal to one, then E is an implicant of F and
this is denoted by E = F. E is called a prime implicant if
E = F and there is no product E, such that E = E, = F and
E, #E.

Lemma 2.1: Let F, G, and H be binary functions.

F-G=F\vG,F\VG=F G
(FVG)'H=F -H\yG-H
F\VF -G =F

(De Morgan’s law) .
(Distributive law) .

(Absorption law) .

As an elementary method to produce the complement of
sum-of-products expression as a sum-of-products expres-
sion, the following is well known.

Algorithm 2.1 (Elementary Complementation Algo-
rithm):

1) By using De Morgan’s law, produce the complement of
a given sum-of-products expression as a product-of-sums
expression.

2) By using the distributive law, expand the expression
into a sum-of-products expression. Delete null products (if
A NB =@ then X"+ X® = () and redundant literals (if
ADBthenX*-X2 = X5,

3) By using the absorption law, drop subsumming prod-
ucts (if £, = E, then E, \/ E, = E,).

Example 2.1: Consider a binary function

F:{0,1} x {0,1,2} x {0, 1,2,3} — {0, 1}
and its expression
F=x3-x} - X0y x) - xPA - xIy xR XL

In the above expression, for simplicity, X" and X{" are rep-
resented by X{ and X |, respectively. Let us obtain the com-
plement of ¥ by Algorithm 2.1. First, by De Morgan’s law,
convert it into a product-of-sums expression

F = (x}vxPTyx0N - (xdv Xk v X9

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 2, FEBRUARY 1985

Second, by the distributive law, we have the following:
F=&i-xavxi-xP¥yxt-xPAy xPA - xP
YD SED L VD CED ¢ LAVA IR0 ¢AVD ¢ Sy B
In the above expression, X} - X{ and X¥? - X} are omitted

because they are null products. By using the distributive law
again, we have the sum-of-products expression

=X} -Xx3- X070 v x)- X3y X2 X9
(VR AED ¢ AP ¢LAVE ¢ 1D ¢
V. x!-xl- X{f'z'” WV, X! X{ao.s}
Vi X? L X{zo.z} 3 X.go.z.s} \/ X{ZO.Z} : X{30.3}
VR SRD CRAVD EAD ¢ EuhVD ¢ 3

<

Third, by the absorption law, we can delete some products
suchas X! - X9+ X% and X9 - XYbecause X9 * X3, = X%and
X! -x9.x%¥ < x! . x"¥ Hence, we have the sum-of-
products expression

F=x3-x3vXt-Xx3-x020y xp - x9Y
\ X(IJ : Xlzo.z} ; X{}n\z.n \/ Xizn,z} > X{f‘”
VO SED IRV ¢ED ¢SV ¢

Note that % now contains 8 products. (End of Example)

Straightforward application of Algorithm 2.1 is quite inef-
ficient. It might be made more efficient by simplifying inter-
mediate results by using the absorption law or by changing
the order of expansion, but Algorithm 2.1 often generates an
excessive number of products. This is because Algorithm 2.1
generates all the prime implicants of a function F, as stated in
the following theorem.

Theorem 2.1: Let & be a sum-of-products expression of
a function F and 7 be an expression obtained by Algo-
rithm 2.1. Then, 7 contains all the prime implicants of F.

The proof can be obtained in a manner similar to the case
of a switching function [7].

As to the maximal number of the prime implicants of func-
tions, the following theorem is known [8].

Theorem 2.2: Let z(n,p) be the maximal number of the
prime implicants of a binary function with p-valued inputs;
there exists a positive constant K such that K(r" - n" %) =
z(n,p) where t = 2" — 1.

The above theorem shows that, in the case of switching
functions (i.e., p = 2), there exists an r-variable function
which has O(3"/n) prime implicants and in the case of binary
functions with four-valued inputs (i.e., p = 4) there exists a
function which has O(15"/n”) prime implicants.

III. A Fast COMPLEMENTATION ALGORITHM

The complementation algorithm in this paper contains the
following restriction operation.

Definition 3.1: Let ¢ = X7+ X3*--- X3 be a product. A
restriction of a function F to ¢, denoted by F(|c), is the
function whose domain is restricted to the minterms of c.
In other words, F(|c) denotes the restricted function

SASAO! ALGORITHM TO DERIVE COMPLEMENT OF BINARY FUNCTION

1

X
™
I 111
ST
R
1
2
Fig. 1. Example 3.1.
F(x;,x3,""",x,) where x, € §|, x, € S,,---, and x, € §,.

Example 3.1: Consider the function F shown in Fig. 1
where P, = P, = P; = {0, 1}. Note that F has the domain
{0, 1} x {0, 1} x {0, 1} and the universal cube for # is X ™" -
X9 x0U Given e = XY - x5 - X% F(|c) denotes the
function shown in Fig. 2. Now F(|c) has the domain
{0,1} x {1} X {0, 1} and the universal cube for F(|c) is
xplaxdFax D, (End of Example)

As shown in the above example, F(|c) has a different
universal cube than F. Also, each function F (|¢;) has a differ-
ent universal cube for a different ¢;

When we calculate the complement by a computer, a func-
tion can be conveniently represented by positional cubes
[11], [12] as illustrated in the following example, and logic
operations can be performed based on these cubes.

Example 3.2: Consider the function F of Example 3.1 and
its expression

g(Xth-Xz) = X? ‘Xlz) \/X? & X% \/X% 'Xg
VX1 XV Xi- XS

where P, = P, = P, = {0, 1}. Then the positional cube for
F is

X] X?. X’?
oL 010
10 10 11
10 11 01
F=11 01 0l
01 01 11
0l 11 10

In the above cube, 10 denotes X?, 01 denotes X/, and 11
denotes X", The positional cube for the universal cube is

U={11 11 11}.

Consider a cube ¢ = X" - X} - XU, The positional cube
for ¢ is

c={11 01 11}.

Logical aND of & and ¢ is obtained by bit-by-bit AND
operation of the cubes for # and ¢

10 00 11
10 01 01
F-c=|11 01 01
01 o1 11
01 01 10

133

T

Fig. 2.

Example 3.1.

where the top row may be deleted because it represents a null
product.

Logical or of & and ¢ is obtained by the concatination of
the cubes for & and ¢ (the cube for ¢ is appended to the
bottom row in the following):

"10 10 11
10 11 01
1o - 11
9; Fh—
Ve=lor o1 11
01 11 10
L1 0, 11

(End of Example)

As can be seen from the above example, when two expres-
sions such as & and ¢ have the same number of bit positions
in cubes, logical AND and logical or of these expressions can
be performed easily. But the restriction operation in
Definition 3.1 changes the number of bit positions in cubes.
This is unsuitable for the computer processing based on the
above positional cubes. Therefore, we introduce a new defi-
nition of restriction operation. In the following definition,
operation 1) produces an expression without changing the
number of bit positions in cubes, and operation 2) makes this
expression represent the same function as the one which can be
obtained by Definition 3.1.

Definition 3.2: Let ¢ = XJ'+ X3*+ - - X% be a product. A
cube restriction of an expression ¥ to ¢ is obtained as fol-
lows and denoted by F(|c).

1) Make a logical product of & and ¢, and delete null
products.

2) Replace each product X} - X%z - -
obtained by 1) with

- X" in the expression

TS] T,UZ,]
X[1 1S X{z?'zU?z'. o Xﬁrx al

Example 3.3: Consider the expression shown Fig. 3

F=x1- X3V VX XDV X XY XS

where each product is shown by a loop in Fig. 3. Suppose
c =X} -X%-X% is given where S, = {0,1}, S, = {1},
and S; = {0, 1}. F(|c) can be obtained by Definition 3.2 as
follows.

1) Logical anp of & and ¢ is given by

Foc =XV X1 X0 X0 X0 X
VR.SED CEP ¢ LAVD (AP ¢ED €3

2) Replacing each product X1 - X72 - XT: by

U Ty S5} (T3U53) _ +T y]
Xﬂ‘ e X P s = .szng{U.i ‘X{f‘,

134
X
=
M|
S{ (el
[
X
Fig. 3. Example 3.3.
we have

F(c) = X3 XE0- X KO- B0 X}
V2 (B ¢ Ll : LEVE ¢35 ¢ LS

Fig. 4 shows the map for F(|c). Note that because of
X¥" =1, F(le) is equivalent to X{- X\ X}V X! Vv
X\ - X

We can also obtain F(|c) by using positional cubes
as follows.

1) By making logical AND operation of % and ¢, and by
deleting a null product, we have

10 01 01
Foc= 11 01 01
01 01 11
01 o1t 10

2) By replacing each product X7' - X% - XT3 (i.e., each
row in 1)) with

X(IT,US,} i X{grzuszl 3 X{jr;usp !

we have
10 11 0l
11 11 01
F(le) =
=101 11 11
01 11 10

If we use Definition 3.1 instead of Definition 3.2, the re-
striction of F becomes as follows:

XI X: X3
10 1 01
11 1 01
01 1 11
01 1 10

Fig. 5 shows the map for the above cubes. Here, notice
that the number of bit positions in each cubes is reduced to 5.
Thus, it becomes difficult to perform logical AND or OR of
the above cubes (with 5 bit positions) and other cubes (with
6 bit positions).

Notice that Figs. 4 and 5 represent the same function
XV X v Xy X v X! X% however, they are based on
different universal cubes, i.e., the maps which can be ex-
pressed by cubes with different bit positions.

(End of Example)

Lemma 3.1: ¢ - F = ¢ - F(|o).

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 2, FEBRUARY 1985

g)

x}g{(

S

D

K
A5
Fig. 4. Example 3.3.

[y

>
e

< (@)

Fig. 5. Example 3.3.

Proof: This is obvious from Definition 3.1. (Q.E.D.)
Lemma 3.2: Let E, (t = 0,1,--+,k) be arbitrary prod-
ucts, and F be an arbitrary expression. If \/4E, = | and
E.E;=@ for i #j, then ¥ = \/’oE, - F, where &, =
F(|E,). The complement of ¥ is given by F = \/*,E, - F,.
Proof:

k k
F = (\/E,) “F=\/(E-F).
=0 =0
By Lemma 3.1, we have
k k
F = vEr : EI7"17(IE|') = vEr * gr-
=0 =0

By the complementation theorem of Hong-Ostapko [10],
we have

Q.E.D.

Note that the first part of Lemma 3.2 is a generalization of
the Shannon expansion. In fact, let E, = X! E, = X! -- -,

and E,_, = X7, and we have

F=xP-Fvxh-Fv--yxrt.g

where ¥, = F(|XY).
Theorem 3.1: The complement of an arbitrary expression
F is given by

F=\VX-%

where F, = F(X) (t = 0,1, --,p; — 1).

Proof: Let E,=X| (t =0,1,---,k:k =p,— 1) in
Lemma 3.2. Because E, (t = 0,1, -+ -, k) satisfy the con-
ditions of Lemma 3.2, we can easily obtain F =
Vi-o (E; - F(E)). (Q.E.D.)

Theorem 3.2: Let a function be represented by
F =X} X$---X>\/%G; then the complement of F is
given by

?‘jﬂd=X§!-@1VX?'I-X§2-@2V...VXfl.ng..
2, =5 .r.

.Xfr-@r
where 4, = X} - X%---X¥ - QGand 1 =

SASAD. ALGORITHM TO DERIVE COMPLEMENT OF BINARY FUNCTION

Proof: Let Eg = X{' - X5$---X5, and E, = X1 -

X§2 X5 (¢ =1,2,-++,r) in Lemma 3.2. Because
E(t =0,1,---,r) satisfy the conditions of Lemma 3.2,
we have

F = E, - @UE:) = \/E:

=0 =0

E) = E, + % by Lemma 3.1, we have

E - %(E).

Because E, * J(

r

F =\/E E -%F.
=0
Because Ey*Ey% =0 and E, - F =E, -4 =14, for
t=1,2,-+-,r, we have
F =\/E -%,.
=1
(Q.E.D.)

By iteratively applying Theorems 3.1 and 3.2, we can
decompose the problem of complementation of a function
into ones with less variables. We will continue the decom-
position iteratively until all the functions become trivial
ones. The following algorithm was developed after many
experiments using large practical problems.

Algorithm 3.1 (Fast Complementation Algorithm): Let
F be a given sum-of-products expression of F. Use the fol-
lowing rules recursively.

Rule 1) If #isaconstant:i.e.,if % = 1,then® = 0, and
ifF=0,then % = 1.

Rule 2) If ¥ depends on only one variable, i.e., if
F=XS\ X\ -\ X5 then F = X§ where
§=85 U8 WU US and S8, +-,8:, CP.

Rule 3) If ? consists of onc product, i.e., if

X51 X$2--- X3 then F = X\ XP - X2y -0 v/
) IED CIEED ¢5UED. ¢.3

Rule 4) If J' has common factor, i.e., if & can be written
as F = X{r - --X{ - G by renaming variables where %
does not contam variables X,, X , X;, then

3zx~?1vxf1.x-§2v...vX\'];l.Xg:...XEt
Vi XEooXE -G,

Rule 5) If & can be decomposed with a variable X, i.e.,
if & can be written as

& =X?'(§(1VX:! - G, N NLXR I'{gp,-—l
where %4, (k = 0,1, ---,p; — 1) do not contain the variable

X;, then by Theorem 3.1 we have
F=X"G\VXi -GV -

We use this rule only when every product of has the literal
X\ X!, -+, or X0 ' for some i, and G, # 0 (k = 0,1,--+,
pi— 1)

Rule 6) If Rules 1)-5) cannot be applied, then F is a sum-
of-products expression consisting of at least two products.
By renaming the variables, it can be written as

VXT‘ - '@PI._| %

F =Xl X0 XR\/ Y.

135

By Theorem 3.2, F is given by

F=X3-G X3 X2G -
VX X2 X X3,

where G, = XJ1 - X%--- X% - G
Definition 3.2: A sum-of-products expression is disjoint
if all products are mutually disjoint; i.e.,

¥ =El(ie.,s =1) or F=E\VE\ --\VE,

where E; + E; = 0 for i # j.

Theorem 3.3: Algorithm 3.1 generates disjoint sum-of-
products expression for F.

Proof: By Theorems 3.1 and 3.2, it is clear that Algo-
rithm 3.1 generates the complement of ¥. It is also easy to
see that all the rules generate disjoint expressions.

(Q.E.D.)

As shown in Theorem 3.3, Algorithm 3.1 generates a dis-
joint sum-of-products expression. Disjoint sum-of-products
expressions have many desirable properties, which are not
utilized in the rest of this paper. (For example, if %, and %,
are disjoint sum-of-products expressions, then F; =
F, « &,, obtained by using the distributive law only, is also
dlSJUI[lT sum-of-products expression. In disjoint sum-of-
products expression, we can easily calculate the number of
minterms of the function. We can quickly check the implica-
tion relation &, = %, by counting the numbers of minterms
in the cubes of %, and &, because ¥, = F, holds if and only
if the number of minterms in %, is equal to the number of
minterms in 3;.)

The number of products in 7 is denoted by #%). Because
the number of products in a disjoint sum-of-products expres-
sion does not exceed the total number of the minterms in the
universal cube, we have /(%) = [1i-, p; where F is obtained
by Algorithm 3.1.

Theorem 3.4: Let ¥ be a sum-of-products expression
obtained by Algorithm 3.1; then (%) = (I, p)/2.

Proof: Let n be the number of variables of F. The proof
will be done by the induction on #.

Corresponding to the rules in Algorithm 3.1, we have
the following.

Rule 1) When n = 0: #(%) = 1.

Rule 2) Whenn = 1: %) = 1 and the theorem holds for
=1,

Rule 3) When % consists of one product, X7 + X3+ -« X,
then, %) = k = n = 2"', and the theorem holds (n = 2).

From here, suppose that the theorem holds for the re-
striction of F, and any function with # — 1 or less variables.

Rule 4) When % has a common factor, i.e.., & can be
written as follows by renaming the variables:

F=iX] K XP
then we have the following relation:
(F) = (XTV XT - XF N - VXD XR - XT) + 1(9).
Since %4 does not contain the variables X, X,, -+, X, it

has at most (n — k) variables. By the induction hypothesis,

136

.U

9”(

b

91*61'9“‘%'9” le)
Fig. 6. Proof of Theorem 3.4.

we have

{15

IIA

1
ik
Thus,

(%)

Ilf\
iIJ‘\

el

L1
2 i=1
and the theorem holds.

Rule 5) When & can be decomposed with respect to X; i.e.,

% can be written as

=X?‘(§0VX%.(§1v”'vxﬁll_i.(§p|—l!
by renaming the variables we have
e -l
(F) = X 1(%)

k=0

where 4, (k = 0,1, ++, p._;) do not contain variable X,.
By the induction hypothesis, #(%,) = (II_,p,)/2. Hence,

j -
H#F) = p, X ‘EHP} = 2'HPJ,
i=2 J=1

and the theorem holds.

Rule 6) When Rules 1)-5) cannot be applied, & can be
written as F = X1 - X3+ - - X$* \/ ¢ by renaming the vari-
ables. Because & = X1 - % \/ X5 - X¥G, \/ - - v XD -
X$- X% - G, we have 1(F) = 3L n(X§ - X5+ - X%+ G).

Let U = Xh - X3+ X then U denotes the universal
cube for F. Because & = U - %, the theorem can be restated
as follows:

T o< L ; : o
WU %) = £ (number of minterms in /).

By the induction hypothesis, the theorem holds for the re-
striction of %. Therefore, we have

—

I(C,— * @,) = —

5 (number of minterms in ¢;)

where 4, =¢,*F = ¢, F(lc), and ¢; = XD - X - - X -
XFisi. .- X% In this case, ¢; can be regarded as the universal
cube for %; (see Fig. 6) as U was for &. Hence, we have

tc;-G) Ei(ﬁa,) (pi—a) (ﬁ p,).

25 r=itl

[EEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 2, FEBRUARY 1985

Letb, = a,/p, (r = 1,2,--+,i — 1); we have

e, %) = —:15(1:[';)) . (]:]1 b,) (1 -5).

Therefore,

(%) = i%(ﬂpr) ' (ljb) -(1
-_{(l — b)) + b,

by by (1 = b} é%(np,)

'(1 — b 'bz"'bk)-

Since b, > 0, we have #(%) < 1/2(Il, p)) and the theorem
holds.

We have exhausted all possible cases and proved the
theorem by induction. (Q.E.D))

Table I shows values of G,, the average number of the
prime implicants for functions with p-valued inputs, and p”/2
forp = 2and p = 4 [8]. (Statistical data forp = 2 are also
shown in [9, p. 123].) By Theorem 2.1, we can see that
Algorithm 2.1 produces G,(n) products on the average. On
the other hand, by Theorem 3.4, Algorithm 3.1 produces
at most p"/2 products. From Table I, we can see that
Algorithm 3.1 produces fewer products than Algorithm 2.1,
whenp = 2andn = 10 or whenp =4 and n = 4.

In Rule 6) of Algorithm 3.1, the selection of products and
the ordering of variables drastically influences the efficiency
of the algorithm. After doing many experiments using prac-
tical PLA’s, the following heuristics have been obtained.

Heuristic 3.1 (Selection of Products): For each product
E =X\ +-X§---X5 in the expression ¥, calculate
L(E) = (number of variables such that S; # P;). Choose a
product with the minimum L(E). If there is more than one
candidate, choose one with the maximum 2, [S,-|.

(Explanation of Heuristic 3.1): Let E = X{ + X3
X5 If S; = P, then literal X% denotes a constant 1 and can
be deleted from E. Thus, L(E) denotes the actual number of
literals in £. In Rule 6, we can minimize the number of the
subfunctions %; by minimizing L(E) = k.

(End of the Explanation)

Heuristic 3.2 (Ordering of the Variables): Rearrange the
variables in the product according to the order shown in the
ORD, which is obtained by the following algorithm.

Algorithm 3.2 (Ordering of the Variables): Suppose that
F can be writtenas ¥ = ¢ \/ Ywherec = X} - X% X3,

o< (i)

r=1

‘(l—b;_}“r"'

% =g\ &V "\ g Suppose that each g; has a form
g = X{](i} e XZTZ[E) g i .XnTuii') where TJ(I) & Pj for
i=1,2,"',m,and_f=1,2,"‘,n

1) Let H0 and H 1 be 0-1 matrices with m rows and n
columns as follows:

if S, N 1.()) # ¢

H1li,j] = {0 ifS;NT)=9.

SASAO: ALGORITHM TO DERIVE COMPLEMENT OF BINARY FUNCTION

TABLE I
COMPARISON OF G,(n) TO p"/2
n 3 8 10 12 14
Uhen p=2 Galn) 24 118 585 2,502 14,255
2"s2 32 128 512 2,048 8,192
n 3 4 5 6 7
—— Byln) 24 138 758 4,095 21,565
ans2 32 128 512 2,048 8,192

2) Initialize index [to 1.
3) Let 20 and 21 be vectors as follows:

ho[j] = 2 HO[i, /)
and r
rilj] = X HI1[,]

where Z; denotes an arithmetic sum for all i.
4) Let h be a vector as follows:

hj] = min{rO[;], R1[j1}.

5) Find J such that A[j] is the minimum.

Set Jth element of a one-dimensional array with n ele-
ments, ORD, to the number stored in /.

Increment 7.

6) Find the rows such that H1[i,J] = 0.

From HO and H1, delete these rows and delete
column J.

7) If HO and H 1 are null, then stop. Else go to step 3).

(Explanation of Heuristic 3.2): Consider the expres-
sion in Rule 6):

FEXY - GvXD XR Gy
VXD XPe Xig o XE G

We want to obtain an ordering of variables X, X5, ", X;
which makes F as simple as possible, but this is not so easy
for this general case. So in Heuristic 3.2, let us consider the
following simpler problem.

First, rewrite % as follows:

F=Xy-GF\/ Xy G

where 4f = F(|X¥) and 95 = F(|X¥). Note that by
Lemma 3.2

F=Xp-Gyvxy -G,

Here, let us consider the problem to find a variable j which
makes either 6§ or 4F as simple as possible. When both
1(%6,)* and #(9,)* are small, we can expect that #(F) is also
small because of the following empirical rule. “The smaller
1(%¥), the smaller #%¥) (r = 1 and 2).”

When #(6F) is small but 1(4¥) is large, we can expect that
#(%¥) is small. For G}, it is also possible to make the com-
plement small by finding the best ordering of variables by the
iterative application of this procedure. When #(‘6f) is large,
but #(%¥) is small, we can do similar things for 4} to make
the complement as simple as possible.

In Step (4), h0[j] shows the number of products in 4§ and

137

h1[i] shows the number of products in % when X} is used
to expand %. Therefore, we will find a variable X; which
makes /[j] minimum. Then, X, is the first variable to expand.
In Step (6), from % shown in the beginning of Algo-
rithm 3.2, we delete products which are not element of 4§.
For ¥, we will use the same technique repeatedly until the
ordering of all the remaining variables are determined.
(End of Explanation)
Although Heuristic 3.2 is more complicated than that of
[8], it usually produces fewer products for practical problems
with many inputs.
Example 3.1: Consider the expression shown in Ex-
ample 2.1

F=x}-Xxp-x8y x)-xPE-x0A Ny xE2x)L

Because we cannot use Rules 1)-5), we use Rule 6). By
Heuristic 3.1, we choose the product X§"* + X! because it is
the product with the least number of literals. Thus, F is
written as follows:

F=x-xlv%
where
g =xy-X)-xP v x)-xP2xA,

Then, we have to obtain the ordering of variables by
Heuristic 3.2. The obtained order of expansion is first X, and
then X; (the details will be shown in Example 3.2.) The
complement of ¥ is given by

F = (x3v P2 x> -Q
= X5 %G v X -xPrY - G,
where
@ = X3-G=x} x5 %03
and
G =x42-xP2V -9 =x7-Xx1-X3 v X - X3 X3,

Next, let us obtain &, and %..
‘G, consists of one product. By Rule 3), we have

G =xtvxi-xP¥vxi-xg-xP
By Rule 5), %, can be written as
G =X} XP* v X3 X9
VR SRNC.CLAVD. CED ¢ MR
Hence,
F=x3-x}vxi-xP?yxi-x3-xPY
VX8 x PR xd - (kP X
4 X%O,I.E}) v Xt (X_!f'” Vi X2. X_[?tl.l‘s}) .
=X} X3V x| -X§- X9y X0 - x3 XY
(VR UED CED CELAVD. ¢ED CED ¢ b
Vv Xi-x3-x§P

Note that ¥ contains 6 products. (End of Example)

138

[EEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 2, FEBRUARY 1983

TABLE II
NUMBER OF PRODUCTS IN THE COMPLEMENTS AND THEIR COMPUTATION TIME
FOR RANDOMLY GENERATED FUNCTIONS

Input . Number of Algorithm 2.1 iDisjoint sharpi|flgorithm 3.1
Oatas minterms :
in F t(F) | CPU t(F) | CPU t(F) | CPU [t(F)
time time time
1 (sec) ({sec) (sec)
32 23 11.89 180 &2 &4 T2 55
p=2 &4 43 24,19 1%0 1.346 Bé 1.20 73
n=8 P& 50 21.41 137 1.59 82 1.60 i
128 61 21.76 112 1.98 81 1.77 &7
3z 20 .98 231 34 az a7 37
p=4 &4 35 20.19 252 &1 52 73 52
n=4 e 43 21.19 167 77 57 24 54
128 50 17.15 142 20 52 23 31

F i1s a function with n p-valued inputs.

F: sum—of-products expression for F. t{F):

Example 3.2: Let us obtain the ordering of the variables
shown in Example 3.1.
D c=xPt xi? x|

0 0 1
HO_[O 1 1]
1
1

ke |
Hl_[l 1].
9. =

HKO=[0 1 2]
ni=[2 2 2.
4y h=1[0 1 2]

5) Because h[1] is the minimum, ORD[1] = 1. I = 2.
6) There is no row such that A1[i,1] = 0. Delete
column 1 from HO and H 1.

3) (hO[2] AO(3]) =[1 2]
(h112] AR1[3D=1[2 2].
4) (r21 R[3D =1[1 2].

5) Because h[2] is minimum, ORD[2] = 2.1
6) There is no row such that H1[i,2] =

column 2. Similarly, we have ORD[3] = 3.
Hence, ORD = [I 2 3]. (End of Example)

= 3.
0. Delete

IV. EXPERIMENTAL RESULTS

Algorithm 3.1 has been programmed in APL and compared
to other algorithms written in APL.

1) Table II compares Algorithm 2.1 based on sharp
algorithm [11],[12], the disjoint sharp algorithm used in
MINI [5], and Algorithm 3.1. Computational experiments
were done as follows.

First, truth tables for 8-variable switching functions were
randomly generated. Then, the functions were simplified by
the distance-one-merge algorithm of MINI [5]. (%) denotes
the number of the products in a simplified expression. Lastly,
the complements of the expressions were obtained. #(%) de-
notes the number of products in the complement %. Table 11
shows that the disjoint sharp algorithm and Algorithm 3.1
are 10-20 times faster than Algorithm 2.1 and generate
many fewer products (see the entries forn = 8and p = 2).
Also, the truth tables of 8-variable switching functions were

F: sum-of-products expression for F. t(F):

number of products in #.

number of products in #F.

decoded to make 4-variable binary functions of 4-valued
inputs (i.e., a PLA with two-bit decoders). Also in this
case, the disjoint sharp and Algorithm 3.1 were faster and
produced many fewer products (see the entries for n = 4
and p = 4).

2) Table IIT shows the comparison of disjoint sharp, Algo-
rithm 3.1, and a fast recursive complementation algorithm
used by Espresso [13]. Control logic networks for micro-
processors were used to compare the performance of these
three algorithms [14]. For example, see the entries for D2,
which is for an 8-input 7-output network. For standard PLA
(two-level PLA), a simplified expression has 43 products.
Also, for a PLA with two-bit decoders [2], [3], a simplified
expression has 42 products. Table III shows that Algo-
rithm 3.1 generates fewer products than other algorithms.
This is a desirable property because in MINI or Espresso
the algorithms often produce an excessive number of prod-
ucts which makes computing the initial phase of minimiza-
tion impossible for large practical problems. Note that the
complementation algorithm used by Espresso does not treat
functions with multiple-valued variables, i.e., decoded
PLA’s. Also, it uses different data structure from Algo-
rithm 3.1. The algorithm of Espresso usually produces many
more products than Algorithm 3.1 because the former is
designed to obtain the complement quickly regardless of
the number of the products, whereas Algorithm 3.1 tries to
obtain the complement as few as possible.

V. APPLICATION

Since Algorithm 3.1 usually produces many fewer prod-
ucts than the disjoint sharp algorithm in a comparable
computation time, we exclusively use Algorithm 3.1 instead
of disjoint sharp in our PLA minimization system [14].

1) Complementation of F (discussed in Sections I and
IV): We have developed both APL and Fortran versions of
MINI systems, which run on main frame computers with
large memory spaces, as well as a MINI which runs on a
personal computers with 8086 used. In the latter case, the
limitation on the memory space is very severe. Heuristic 3.2
is the key of the algorithm which minimizes large practical

SASAQ:

ALGORITHM TO DERIVE COMPLEMENT OF BINARY FUNCTION

TABLE 1II

139

NUMBER OF PRODUCTS IN THE COMPLEMENTS AND THEIR COMPUTATION TIME

ForR CONTROL LoGIc NETWORKS FOR MICROPROCESSORS

Disjoint Algorithm 3.1 Algorithm
Input data sharp of ESPRESSO
£61,013]
Circuit CPU CPU | CPU
time = time | — time =
name n P m t(F)| (sec)| t(F) | (sec) |[t(F) (sec)| (&>
o g8 2 7 43 | 1.57 | 125 t 1.71 | eB .49 86
a 4 T a4z .54 106 | 1.51 | 80 T ey
R1 8 2 31 33 1.33 123 I 1.06 | 31 AT 142
a 4 31 32 .B2 63 | .87 | 33 — —_—
b I T
11 16 2 17 110 8.51 333 | 4.87 § 211 6.20 1186
8 4 17 103 4.86 288 | 3.63 | 208 =t e
14 32 2 20 222 &0.74 3042 | 20.08 | S96 3.66 499
16 4 20 204 30.23 1633 t Z7.41 | 851 —_— -
s 24 2 14 62 7.37 918 i 6.51 i 271 1.78 415
12 4 14 61 4.49 1100 | 6.49 | 310 o =i
Az 10 2 8 8% a.46 228 | 7.12 | 185 .91 192
5 4 8 B3 2.62 216 | 5.91 | 162 = —

F is a function with n p-valued input and m outputs.
For the definition of other symbols, see the notes of Table II.

PLA’s on a small memory space.

2) REDUCE algorithm used in MINI [5]: The original
version of REDUCE algorithm in MINI is very time con-
suming. By using Algorithm 3.1, it becomes 10-20 times
faster than the original one.

3) Output phase optimization of PLA’s [14]: The comple-
ment of the multiple-output functions is required to obtain a
near optimal output phase assignment.

4) Essential prime implicant detection [14]: In order to
find essential prime implicants [9], we have to check the
relation ¢ = # many times. Algorithm 3.1 can be modified
to check quickly whether ¢ = % or not (see also [15]).

Other application to logic design are as follows.

5) Verification of the equivalence of two logical expres-
sions [16]: Boolean comparison is a design verification
technique in which two logic networks are compared for
functional equivalence. It was used on the IBM 3081 project
to establish that hardware flowcharts and the details of hard-
ware logic design were functionally equivalent. Usually,
equivalence of two logical expressions F and G is verified by
the following method [11]:

F=Go{F4+4=¢ and G+ F=0}.

By slightly modifying Algorithm 3.1, we can more effi-
ciently verify F -G = ¢ and G - F = @ (see also [15]).

6) Test generation: Boolean difference [17] can be calcu-
lated efficiently by using Algorithm 3.1. (Recently, a fast
program to obtain the test for PLA’s was developed, which
also uses a partitioned algorithm [18].)

7) Conversion of a product-of-sums expression into a
sum-of-products form: It is known that the straightforward
method is usually very time consuming (see [9, p. 106]).
Algorithm 3.1 is also useful for such conversion.

VI. CONCLUSIONS

This paper derived Algorithm 3.1 which generates at most
p"/2 products. Our experiments concluded that Algo-

rithm 3.1 is 10-20 times faster than the conventional
elementary method when n = 8 and p = 2, and Algo-
rithm 3.1 produces many fewer products than the disjoint
sharp algorithm used by MINI for large practical problems.

ACKNOWLEDGMENT

Part of this work was done while the author was a Visiting
Scientist at the IBM T.J. Watson Research Center. The
author is grateful to Dr. R. K. Brayton who provided all the
data for the control logic networks as well as the results of his
program Espresso, and also Dr. S.J. Hong who supplied the
original APL MINI program.

REFERENCES

[1] B. Dunham and R. Fridshal, “The problem of simplifying logical expres-
sions,” J. Svmbol. Logic, vol. 24, pp. 17-19, 1959.

T. Sasao, “Multiple-valued decomposition of generalized Boolean func-
tions and the complexity of programmable logic arrays,” IEEE Trans.
Comput., vol. C-30, pp. 635-643, Sept. 1981,

S. Muroga, VLSI Svstem Design. New York: Wiley-Interscience,
1982.

M. Davio, J. P. Deschamps, and A. Thayse, Discrete and Switching
Functions. New York: George and McGraw-Hill, 1978.

S.J. Hong, R. G. Cain, and D. L. Ostapko, “MINI: A heuristic approach
for logic minimization,” IBM J. Res. Devel., pp. 443-458, Sept. 1974.
R. K. Brayton. G. D. Hachtel, L. A. Hemachandra, A. R. Newton, and
A.L. M. Sangiovanni-Vincentelli, “A comparison of logic minimization
strategies using ESPRESSO: An APL program package for partitioned
logic minimization,” in Proc. 1982 Int. Symp. Circ. Syst., May 1982,
pp. 42-48.

R.J. Nelson, “Simplest normal truth function,” J. Symbol. Logic,
vol. 20, pp. 105-108, June 1954,

T. Sasao, “A fast complementation algorithm for sum-of-products
expressions of multiple-valued input binary functions,” in Proc. I3th Int.
Symp. Multiple-Valued Logic, May 1983, pp. 103-110.

S. Muroga, Logic design and Swiiching Theory. New York: Wiley-
Interscience, 1979, p. 106.

S.J. Hong and D. L. Ostapko, “On complementation of Boolean func-
tions,” JEEFE Trans. Comput., vol. C-21, p. 1022, 1972.

D. L. Dietmeyer, Logic Design of Digital Systems (2nd ed).
MA: Allyn and Bacon, 1978.

[2]

19
[10]

Boston,

(1]

|40

12] S.Y.H. Suand P. Y. Cheung, “Computer simplification of multi-valued
switching functions,” in Computer Science and Multiple-Valued Logic.
Amsterdam, The Netherlands: North-Holland, 1977, pp. 189-220.

13] R.K. Brayton, J. D. Cohen, G. D. Hachtel, B. M. Tragger, and D. Y. Y.
Yun, “Fast recursive Boolean function manipulation,” in Proc. 1982 Int.
Symp. Circ. Syst., May 1982, pp. 58-62.

14] T. Sasao, “Input variable assignment and output phase optimization of
PLA’s,” IEEE Trans. Comput., vol. C-33, pp. 879-894, Oct. 1984.

15] ——, “Tautology checking algorithm for multiple-valued input binary
functions and their application,” in Proc. I4th Inr. Symp. Multiple-Valued
Logic, May 1984, pp. 242-250.

16] G.L. Smith, R.J. Bahnsen, and H. Halliwell, “Boolean comparison of
hardware and flowcharts,” IBM J. Res. Devel., pp. 106-116, Jan. 1982.

17] E.E. Sellers, M. Y. Hsiao, and C. L. Bearnson, “Analyzing errors with
Boolean difference,” [EEE Trans. COmput., vol. C-18, pp. 678-683,
1968.

18] F. Somenzi, S. Gai, M. Mezzalama, and P. Prinetto, “Part: Program-
mable ARay Testing based on a PARTitioning algorithm,” I[EEE Trans.
Comput. Aided Design Integ. Circ. Syst., vol. CAD-3, no. 2,
pp. 143-149, Apr. 1984,

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 2, FEBRUARY 1985

Tsutomu Sasao (S'72-M'77) was born in Osaka,
Japan, on January 26, 1950. He received the B.E.,
M.E., and Ph.D. degrees in electronic engineering
from Osaka University, Osaka, Japan, in 1972,
1974, and 1977, respectively.

Since 1977 he has been with Osaka University.
His research interests include design automation of
digital systems, switching theory, and application
of microprocessors. He specializes in the design of
PLA and application of multiple-valued logic to the
design automation. From February 1982, he spent a
year as a Visiting Scientist at the IBM T. J. Watson Research Center, Yorktown
Heights, NY, where he developed a PLA minimization system.

Dr. Sasao served as Asia Area Program Chairman of the 1984 International
Syposium on Multiple-Valued Logic, and is currently a member of the Execu-
tive Committee of the IEEE Computer Society Technical Committee on
Multiple-Valued Logic. He has published three books on switching theory and
logical design in Japanese. He is a member of the Institute of Electronics and
Communication Engineers of Japan. He received the NTWA Memorial Award
in 1979,

