[EEE TRANSACTIONS ON COMPUTERS, VOL. ¢-33, No. 10, ocToRER 1984

879

Input Variable Assignment and Output
Phase Optimization of PLA’s

TSUTOMU SASAQO, MEMBER, IEEE

Abstract — A PLA minimization system having the following
features is presented:

1) minimization of both two-level PLA’s and PLA’s with two-bit
decoders;

2) optimal input variable assignment to the decoders;

3) optimal output phase assignment; and

4) essential prime implicants detection without generating all
the prime implicants.

By using this system, 16 control circuits for microprocessors
and 12 arithmetic functions were minimized under five conditions.
PLA’s with two-bit decoders were 12 percent smaller than two-
level PLA’s when the input variables were trivially assigned, and
25 percent smaller when optimally assigned. For the control cir-
cuits, more than half of the prime implicants in the solutions were
essential, For the arithmetic functions, the output phase optimized
PLA’s were 10 percent smaller than output phase trivial ones. The
number of terms required to realize n-bit adders is 6 - 2" —
d4n — 4 for two-level PLA’s and n? + 1 for PLA’s with two-bit

decoders. 5

Index Terms — Adder, complexity of logic circuits, decoder
assignment, essential prime implicants, logic design, output phase
optimization, programmable logic array, switching theory.

[. INTRODUCTION
S LSI systems become complex, time and cost for the
logic design increases sharply. In order to shorten the
design time and to minimize design errors, automatic design
has become vitally important. Programmable logic arrays
(PLA’s) are suitable for the automatic design because of their
regular structure [1]-[3].

Several useful tools for the PLA design have been reported.

1) Minimization of logic expressions [4]-[8].

2) High-level language to PLA transformation [9]—[12].

3) Folding [13].

In this paper, we will consider the minimization of two
types of PLA’s: two-level PLA’s (Fig. 2) and PLA’s with
two-bit decoders (Fig. 6). It is known that the PLA’s
with two-bit decoders generally requires smaller arrays than
the two-level PLA’s. Table I shows the number of columns of
PLA’s for various functions [14].

This paper describes a minimization system for PLA’s
which has the following features. 1) It treats both two-level
PLA’s and PLA’s with two-bit decoders. 2) It finds a near-
optimal assignment of the input variables to the decoders.
3) It finds a near-optimal output phase assignment. 4) The
minimization program for logical expressions finds all
the essential prime implicants without generating all the
prime implicants.

Manuscript received July 11, 1983; revised March 14, 1984,

The author was with the IBM T.J. Watson Research Center, Yorktown

Heights, NY 10598. He is now with the Department of Electronic Engineering,
Osaka University, Osaka 565, Japan.

TABLE I
NUMEBER OF COLUMNS OF PLA's (n = 2r)
Two—level PLA PLA with
Two~bit Decoders
Arbitrary function
(Worst Case) 2"t 2Mnd
Symmetric function
{Worst Case) gr=l LR
Parity lunction
21 =1

Random function of
10 —variables 163 120
(Average)

Section II describes a design method for minimal two-
level PLA’s and PLA's with two-bit decoders using charac-
teristic functions. The two-bit adder (Table 1V) is realized by
a two-level PLA (Fig. 2) and a PLA with two-bit decoders
(Fig. 6).

Section III describes an assign method for input variables
to the decoders. The two-bit adder is further reduced by
making an optimal bit pairing (Fig. 8).

Section IV describes a method for output phase assign-
ment. The two-bit adder can be further optimized by
complementing the most significant output (Fig. 9).

Section V describes the experimental results (Tables VI
and VII).

Appendix A explains detail of the output phase assignment
algorithm.

Appendix B describes’ the fast essential prime impli-
cant detection method without generating all the prime
implicants.

Appendix C derives the number of terms of PLA’s for n-bit
adders (Table VIID).

II. PLA AND CHARACTERISTIC FUNCTIONS

In this section, we describe a design method for two-level
PLA’s and PLA’s with two-bit decoders using characteristic
functions.

A. Positional Cube Notation

A positional cube notation [4], [15], [16] is quite con-
venient for manipulating logical expressions.

Example 1: Consider a three-variable (x,, xs, x3)
universe. The relation of implicants, their positional
cube notations, and their meaning are shown in
Table I1. (End of Example)

In the positional cube notation, each variable is denoted by
a binary pair: x; is denoted by 01, X; is denoted by 10, and

NAN10 O2ANRAINN DeT7aTn1 NN Ty 104 T

880
TABLE II
PosrrioNaL CUBE NOTATION
Implicant Paositional Cube MNatation Meaning
Xy Xy Xy minterms with
¥ axy 10 -01 =11 =0, x,=1,x;=00r1
ENEN 11 — 01 - 01 minterms with
xy=0orl,x;=1x;=1
¥ ey 10 — 11 = 01 minterms with
ay=0,x=00r1,x,=1
1
U = (universe) 11 =11 =11 minterms with
{constant 1) xy=00rl,z;=00rl,xy=00r1
¢ = (null) 10 = 10 — 00 no minterms
(constant 0)

DON’T CARE (missing variable) is denoted by 11. This represen-
tation has the meaning that 10 is the first of the two values (0)
of the variable, 01 is the second value (1), and 11 is the
first or the second or both values. The code 00 represents no
value of the variable, and any cube containing a 00 for any
variable position denotes a null cube.

With this notation, multiple-valued input binary functions,
which will be explained in Section II-F, can be represented in
a straightforward manner.

A list of cubes represents the union of the vertices covered
by each cube and is called a cover. The covers exclusively
covering 1’s, 0’s, and unspecified points are called, re-
spectively, the ON cover, the OFF cover, and the DC cover.

B. Characteristic Functions for Multioutput Functions

For an n-input m-output function, consider an (n + 1)
input two-valued output function where the output part is
treated as an additional input variable. The variable which
represents the output part takes m values.

Example 2: A 2-input 2-output function shown in
Table Ill(a) can be represented as Table l1I(b). A denotes
that “if x, = Oand x; = 0, then f; = 1 and f; = 0,” whereas
B denotes that “the combinationx, = 0, x, = 0, f, = 1, and
fi = 0 is permitted.” The combination x, = 0, x, = 0, and
fi = 1is not contained in Table III(b), so it is not permitted.
Let F be the function which is represented by Table I11(b),
then F will show all the permitted combination of inputs
and outputs. F is called characteristic function because it
contains all and only the permitted combinations of inputs
and outputs.

C. Design of Two-Level PLA’s

By using characteristic functions, we can design PLA’s for
multiple-output functions.

Example 3: Consider the function of Table III. The cover
for the characteristic function F can be simplified by using
a minimization program (which will be described in

Qantinm IT.EY ae Fallawro-

IEEE TRANSACTIONS ON COMPUTERS, VolL. ©-33, No. 10, OCTORER 19§

N x fof X X ff

10— 10— 10

10—01—01 11— 10—10

01—10—10 10—01—01

01—01—10 01—11—10

input output input output

Original Cover Minimized Cover

Fig. 1 is a two-level PLA realization. Bach cube in tl
minimized cover corresponds to each term of the PLA. No
that 0’s in the input parts of the cover denote the An
connection, whereas 1’s in the output part denote ¢
connections. (End of Exampl

Example 4: Consider the two-bit adder (ADR2)

X Xa
+) b
h f f

The truth table for ADR2 is shown in Table IV. The charas
teristic function is represented by

X Xk e g h
10-10-10-01-0 17
10-10-01-10-0
10-10-01-01-0
10-01-10-10-0
10-01-10-01-0
10-01-01-10-0
10-01-01-01-1
01-10-10-10-0
01-10-10-01-0
01-10-01-10-1
01-10-01-01-1
01-01-10-10-0
01-01-10-01-1
01-01-01-10-1
L0I-01-01-01-1 1

OO O e OO

= O

O e (D e e (O e (DD e (D e e (D

[t can be minimized to

[01-11-01-11-1 O
11-01-01-01-1 O
01-01-11-01-1 O
11-10-11-01-0 0
11-01-11-10-0 0
10-01-10-01-0 1
01-01-01-01-1 1
10-01-01-10-0 1
01-10-10-01-0 1

1

1

J

01-11-10-10-0
L 10-10-01-11-0

o I - T o T o R e o B T = I o
1

Fig. 2 shows the two-level PLA for ADR2.
{Fnd of Examnl

ASAD. PROGRAMMABLE LOGIC ARRAYS

TABLE III
CHARACTERISTIC FUNCTION

x X foh Xy Uofy)

0o 0 10 =4 10-=10 - 10 «~ B
c 1 01 10 — 01 - 01

t o 140 01 = 10 - 10

1 1 10 01 - 01 — 10
(a) Truth Table (b} Positional Cube Notation

i B
X — +— i AND array
D i 1
*p—g—t i
_T— {2 :
{ I S O |
§ & sk —lr fy OR array
4 } f|
A S (|
Fig. 1. Two-level PLA for Table III(a).
TABLE IV
Two-Bir ADDER (ADR2)
Xy Ko Rg Xg FO ‘Fi ‘F2
b 0 G D g 0 0
00 0 1 0 0 1
0 1 =2 B 0 1 0
0 0 1 1 0 1 1
0D 1 0 O 0 0 1
D1 0 1 0 1 0
0 1 1 0 01 1
01 1 1 1 0 0
1 0 0 0 0o 1 0
1 0 0 1 [V R |
1 0 1 0 1 0 0
i 0 1 1 g 0 1
1 1 9. 0 LSS S
O T T | 1 0 O
1 4 W0 1 0 1
3 TR L R § a0t S

ittt
X — —t }
et ;
*2 f t
e 2 =
a—¥ :'" :
Loy e
F-+++t+tTT T
Fr++++++++1 7
} *— + fo
—— ‘¥—+ L fy
| $ | fa
N O 3 e B O O + -
Fig. 2. Two-level PLA for ADR2.

D. PLA’s with Two-Bit Decoders

As shown in Table I, PLA’s with two-bit decoders gener-
ally require smaller arrays than two-level PLA’s. The two-bit
decoder shown in Fig. 3 generates all the maxterms of the
two variables, i.e., (x; \/ X2, X \/ X2, % \/ Xz, and X, \/ X2).
Note that the decoder here generates maxterms instead of
minterms. An arbitrary two-variable function can be
represented by a product of maxterms (a canonical product-
of-sums expression)

TABLE V
NUMBER OF CUBES WHICH IS SUFFICIENT TO REALIZE FOR EAcH OUTPUT PHASE
ASSIGNMENT
Assignmemt Output Number of List of
vector Assignment cubes cubes
000 Ff P 2 P3Py PgsP7 Py
001 Fo f1 2 5 P21Pg1P5IPgIPY
010 Fo Fy T2 a P2:P3iPg i Pg
D11 fy fy 5 4 P2+P3+P5:Pg
100 FO Fl FZ a PPy P71Pg
101 gy 'Fl EQ a P{:1PgiPgiP7
110 o 1 To 5 P{1P21Pg1Pg s Pg
a9 U | Fl] ‘F1 FE =] Py1P3sPgi1P 1Py
X, — — xaVx2
%y Vi,
= [jivil’
lex2
Fig. 3. Two-bit decoder.

for,x) = (o x V%) (6 V4V o
R (CAVERVE AR (FAVETRVETY
where ¢; (i = 0,1,2,3)is a constant O or 1.
An arbitrary two-variable function can be uniquely

specified by a vector (¢, €1, ¢z, €3).
Example 5: When (¢, ¢1, ¢z, ¢3) = (1,0,0,1).

fle,) = (VX)) " (0 V&) = 0%V o,
(End of Example)

By making the AND of the maxterms forc; = 0, we can realize
a logic function represented by (cy, ¢1, €2, €3)-
Example 6: Fig. 4 realizes f(x;,x;) = x%2 \/ XX
(End of Example)
Example 7: Fig. 5 realizes a function

F = filx, x2) - fales, xa) * falxs, %)

where
filx, x2) = 0132 \/ XXz,
flxs, xa) =

filxs, X6) = Xxsx6 \/ XsXs -

X3X4 v E_;E,; 4

In other words,
= (ox \/ Xi%2) * (6sxa V/ Xaxa) * (XsXs \/ XsXe) .

This is a coincidence function for three bits. If we realize this
function by a two-level PLA, we need 8 columns.
(End of Example)
E. Positional Cubes for PLA's with Two-Bit Decoders
Consider the function f in Example 7. Let the input vari-
ables be partitioned into X, = (x,x:), X> = (x3,x,), and
X; = (xs,x). Then, X; (i = 0,1, 2) takes four values 00, 01,
10, and 11. Now, f can be represented by a positional cube

Xl X: X_q
00 01 10 I1 00 O1 10 11 00 01 10 11
1 ¢ 0 1 —1 0 0 1 —1 0 0 1

This shows thatf = 1if (X, = 00or 11)and (X; = 00or 11)

@ denotes AND

X

X2

Fig. 4. Example 6.

Fig. 5. Coincidence function for three bits.

and (X; = 00 or 11). This positional cube representation is
a generalization of that for an ordinary two-valued logic
function.

Lemma 2.1: Suppose that n = 2r, where r is a positive
integer. Let the input variables be partitioned into X, =
(1,30, % = (x3,05), ", X, = (x,_1,X,) .

1) Each column of a PLA with two-bit decoders realizes a
function which has a form

fl{xlvxl} .fE(x?a! x4) v 'f;-(xn—lsxn)

where f;(x3-1, x3) is an arbitrary function of two variables.
2) A function realized by each column can be represented

by a cube
b S ey) .
COCICIC3 = CECTCREy — nomrereeees — cpeliches.

Proof: Let!l = 2i.
1) Each decoder for X; = (x;_,, x;) generates all the max-
terms of the two variables, i.e.,

[xf—l N -‘-'1): (xi—l \ -;:;], (}I—] \ X)), Gf—l \V4 }J) .

Each column of the PLA realizes a function P

and

r

Neb \xi Vo) 2 (e Mxs EED « (eh V%t Vo)

i=1
* (¢ \oxp x;)
where
if there is an AND connection

j {0
CI= 1

An arbitrary function fi(x,_;,x;) can be represented by a

if there is no connection.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-33, NO. 10, OCTOBER 1984

canonical product-of-sums expression

(f’{) VXV x) (C‘i VXV }!) * {(‘2 AV E.’—I \ xp)
2 {f'rw AV }r—l N }1}
where ¢; = 0 or 1.
Hence, P = AL, fi(x;-1,x;), and we have proved part 1).

2) Because for each part f;(x,_,, x;) can be uniquely repre-
sented by

(¢b, i, ¢4, ¢5), we have proved part 2).

(Q.E.D.)

Example 8: Let us design ADR2 of Example 4 by using
PLA’s with two-bit decoders. Suppose that the input vari-
ables are partitioned as X, = (x,,x,), and X, = (x3,x,). The
characteristic function is represented by

.S s 3

[1000—0100—0 0 1
1000—0010—0 1 0
1000—0001—0 1 1
0100—1000—0 0 1
0100—0100—0 1 0
0100—0010—0 1 1
0100—0001—1 0 0
0010—1000—0 1 0
0010—0100—0 1 1
0010—0010—1 0 0
0010—0001 —1 0 1
0001 —1000—0 1 1
0001 —0100—1 0 0
0001 —0010—1 O 1

L0001 —0001—1 1 04

This can be minimized to

[0111—0001—1 0 O]
0011—0011—1 0 O
0001 —0I111—1 0 O
1010—0101—0 0 1
0101 —1010—0 0O 1
1100—0010—0 1 O
0110—0100—0 1 0O
1001 —0001—0 1 0|

L0011 —1000—0 1 OJ

Fig. 6 shows the PLA with two-bit decoders for ADR2. Note
that 0’s in the input parts denote the AND connections while
1’s in the output part denote OR connection.
(End of Example)
Theorem 2.1: Suppose that the assignment of the input
variables to the decoders is fixed. The necessary and suf-
ficient number of columns of the PLA for the function
(fo.fi, ' " " o fw—1) 1s equal to the number of products in a
minimum sum-of-products expression for the characteristic
function F.
Proof: Let ¥, be a minimum sum-of-product expres-

SASAO: PROGRAMMABLE LOGIC ARRAYS

NN
X, — t +—
} =
t t
Xo— t 5l
| I
Xy — t t
t +
} }
X, —] _I_
4 L EELT L L
T T T T T TR
—%K } fo
—4 x—x—)Hf—l-—- f)
| |- fo
T 4] e ________]lJ
Fig. 6. PLA for ADR2 (input variable assignment nonoptimized).

sion for F, and #; = (%) be the number of products in %,.
We can realize a PLA for the functions with ¢, columns in the
way shown in Section II-D. Suppose that a minimum PLA
which realizes the function (f, f;, - - - ,f,—1) has s columns.
Then, we can make a sum-of-products expression %, with s
products which represents the characteristic function F.
Because F, is a minimum sum-of-products expression for F,
we have f; = 5. On the other hand, because the minimum
PLA has s columns, s = r,. Hence, t, = s. (Q.E.D.)

F. Minimization of Characteristic Functions

From Theorem 2.1, we have the following. When the
assignment of the input variables to the decoders is fixed, in
order to minimize the size of the PLA, it is sufficient to obtain
a minimum sum-of-products expression of the characteristic
function.

Mathematically, the characteristic functions are defined as
follows.

1) Characteristic function f of a single output function
is a mapping f:P, X P, X -+ X P, > B where P, =
0.4 e el d = 1.2, 2 =3 (G =
1,2,---,r) if PLA’s with one-bit decoders (i.e., two-level
PLA’s) are used, and p; = 4 (i = 1,2,---,r) if PLA’s with
two-bit decoders are used. In general, we can design PLA’s
where various sizes of decoders are used. In such case, if part
X; has an n;-input decoder, then p, = 2",

2) Characteristic function F of m-output function

fiitPip XP, X ---XP,—>B
where
J =01, ~,m = 1,
is a mapping
F:PyXP, X - XPXM-—B
where
M={0,1,---.m -1}

and

883

F(XI»X:- T er;j) =f_}(X|’X2?. o aXr}-

A class of functions which can be represented by
F:XP,—B
=1
where
Pi:{(]’ll--.:pl . l}

is called a multiple-valued input binary function.
Theorem 2.2: An arbitrary multiple-valued input binary
function can be represented by a sum-of-products expression

\/ X‘?I . X%E ----- Xﬁl’l
(§1.85, .5,
where §; C P;.

@(XlGX)_’ e an) =

The authors have developed a program which obtains
minimum sum-of-products expressions for multiple-valued
input binary functions [18]. The algorithm is similar to
Quine-McCluskey’s method for two-valued input logic
functions. The only difference is that the input variables take
multiple values. We used Tison’s algorithm [16] to generate
all the prime implicants. Unfortunately, in the case of
multiple-valued input binary functions (which correspond to
PLA’s with decoders), the number of prime implicants is
much larger than that of the corresponding two-valued input
logic function (which corresponds to two-level PLA’s).
Therefore, minimization of expressions for PLA’s with
two-bit decoders is more time consuming than that of
expression for two-level PLA's. We have confirmed that our
minimization program obtains minimum solutions in a rea-
sonable computation time by using a mainframe computer,
up to 10-variable problems in the case of two-valued input
binary functions (for two-level PLA’s), and up to 5-variable
problems in the case of four-valued input binary functions
(for PLA’s with two-bit decoders).

Because the computation time and memory storage for the
minimization program increase exponentially with the num-
ber of inputs, it is impractical to try to find absolute minimum
solutions for larger problems.

MINI [4] is a heuristic program which obtains near-
minimum sum-of-products expressions for multiple-valued
input binary functions. Because the computation time for
MINI is in most cases, roughly speaking, proportional to the
square of the number of the cubes in the final solution, MINI
can minimize practical PLA’s with many inputs. Most PLA’s
shown in Tables VI and VII were minimized within a few
minutes by using APL MINIII on IBM 3081K with 2 mega-
bytes of workspace. (MINIII is an improved version of MINI
developed by the author; see Section V-C.) The authors have
also developed a Fortran version of MINIII, which is about
5 times faster than the APL version,

ITI. ASSIGNMENT OF THE INPUT VARIABLES TO THE DECODERS

The size of PLA’s with two-bit decoders can be reduced by
optimizing the assignment of the input variables [14]. For the
assignment problem, 16 different heuristic algorithms have

884 [EEE TRANSACTIONS ON COMPUTERS, VOL. ¢-33, No. 10, ocTOBER 1984
TABLE VI
NUMBER OF COLUMNS FOR ARITHMETIC PLA’S
Two-level PLA PLA with two-bil decoders

Circuit Name [Trivial Assignment Assignment near optimal

Qutput Phase [Output Phase COuiput Phase |[Outpur Phase i‘Output Phase

In—Cut—Froducts original | npear optimal original original | near optimal
n=73

f=xwp 6-6-63 31 (3 31 (4) 27 (1) 22 (4) 19 (2)
ne=4

88255 127 (12) 112 (9) 108 (3) 89 (3) 8O (3)
n=3

f=x+y 6-4-63 31 (16) 25 (10) 23 (10) 10 (8) 8 (5)
n=4

8—5-255 75 (35) 61 (24) 64 (20) 17 (12) 14 (8)
=3

=V 't 6-4-63 36 (18) 29 (7) 33 (9) 19 (6) 19 (6)
n=4

R—5-255 121 (23) 106 (22) 102 (13) 74 (13) 68 (4)
n=b

f=x' 6-12-63 49 (3) 43 (2) 44 (3) 41 (3) 36 (2)
n=8

8—16-255 185 (T) 180 (4) 163 (3) 156 (3) 147 ()
n=0

f=vE 6-4-63 23 (10) 21 (6) 18 (5) 17 (5) 14 (7)
n=8§

8—5-255 57 (9) 52 (13) 42 (8) 18 () 33 (9)
ne=6

F=12"-1x 6-6-63 40 (15) 15 (15) 33 (6) 34 (6) 32 (4)
log 5(x +1)/n] n=4§

88255 129 (11) 118 (11) 115 (5) 109 (4) 99 (4)

Numbers in the parenthesis denote that of essential prime implicants.

TABLE VII
NUMBER OF COLUMNS FOR CONTROL PLA’S

Two-level PLA PLA with Two-bit Decoders
Trivial Assipnment Assignment __near optimal

Circuit Name Qutput Phase |Output Phase Output Phase |Output Phase |Output Phase

original | near optimal original original | near optlimal
In—Out—Products
D1
4-7-15 9 (3 9 (3) 9 (0) 9 (0) 9 (0}
D2
§—7-58 39 (18) 35 {16) 37 (12) 33 (10) 29 (7)
R1
E—-31-74 28 (22) 23 (12) 28 (22) 27 (200 23 (12)
Ia
15=11-138 107 (57) 103 (36) 92 (41) 92 (41)
Il
16=17-110 104 (54) 104 (54) 97 (31) 85 (30) 85 (30)
2
[9—-10-137 135 (85) 116 (33) 124 (68) 85 (30) B5 (30)
13
35-29-75 74 (44) 74 (44) 71 (38) 62 (38)
I4
32-20-234 212 (118) 194 (94) 152 (70)
5
24-14-162 62 (33) 62 (53) 59 (45) 52 (42)
i6
33-23-54 54 (40) 54 (40) 52 (41) 51 (7)
I7
27-10-84 54 (31) 43 (31) 52 (30) 44 (7) 37 (10)
71
47-72-241 215 (46) 197 (48) 195 (0)
51
T7-3-20 29 (2) 27 (5) 21 () 21 () 20 (2)
Al
12—-8=-20 20 (20) 16 (16) 20 (20) 20 (20) 16 (16)
A2
10801 68 (36) 37 (M 48 (13) 38 (8) 26 (0)
X1
27—-6-110 110 (100) BE (80) B0 (48) 80 (48)

Numbers in the parenthesis denote that of essential prime implicants.

been developed. Even the simplest one produced about
10 percent smaller PLA’s than trivially assigned ones [17].

This section describes a simple algorithm which finds
a near-optimal assignment of the input variables to the
decoders. For simplicity, it is assumed that n = 2r, where r
is a positive integer.

Definition 3.1: Letl = {1,2,-- -, n} be the set of indexes
of variables in {X}. The partition of I which corresponds to the
partition of {X} is denoted by Il. The number of terms in a

minimum sum-of-products expression for f(X) under the
partition IT is denoted by 7(f:II).

Definition 3.2: Let an expression which represents
flx, %, , x,) be F. The number of distinct terms which are
obtained by deleting literals of x; and x; from & is denoted by
q(i,j).

Example 9: Let

F = X XaXaXs N/ XiXoXaXa \/ XiXaXaXy \/ X XpXaXg \/ X1 XpXaXy .

SASAD. PROGRAMMABLE LOGIC ARRAYS

The terms which are obtained by deleting the literals of x; and
X, are

XX, TiXs XNX; XXy and xxs.

The number of distinct terms is 4. So, we have g(3,4) = 4.
Similarly, we have ¢(1,3) = ¢(2,4) = 3,¢9(1,2) =
q(1,4) = ¢(2,3) = 4. (End of Example)

1(f:11;) denotes the number of terms in a minimum sum-
of-products expression when x; and x; are paired to form a
four-valued variable.

Lemma 3.1: Let Wy = {11, 12)s =510) 5 In]k
t(f:11;) = q(,)).

Proof: Let F be an expression for f. Without loss of
generality, we can assume that i = 1 and j = 2. Suppose
that & is represented by a sum-of-products expression

% = \/x-!ﬁ . x-;'z A .xﬁn
(s
where

S o (_lslfS?_! R 5Sn)
and
S; € {*,1,0}.

xj represents a literal of x;, where

1 if §; = *
5= {x if § =1
},‘ if S =0.

By combining the products which have the factor x3* -
x3- - x3, we have
& = N0 %0 8% - dt il Siag
(8%)
where

S* = (Sjss-h Tl 9Sn)

and G(x,, x;, $*) is an expression which contains no other
variables than x; and x,.

Let (%)) be the number of products in %F,. Note that 1(%,)
is equal to the number of distinct factors which have form
x$ - x§¢- - x3 in F,. By Definition 3.2, we have (%) =
g(i,j). Suppose that x, and x, are paired to form a variable
X, = (x;,x,), and that X' is replaced by %(x,, x,, $*) where
7, C {00,01,10, 11}, then &, becomes a sum-of-products
expression for f under the partition 11,;. Because #(f:II;)
denotes the number of products in a2 minimum sum-of-
products expression, we have r(f:II;) = 1(%).

Hence, t(f:11,) = q(i,j). (Q.E.D.)

The smaller r(f:II;), the simpler the expression for f
becomes when x; and x; are paired to form a four-valued
variable. Because it takes much computation time to obtain
1(f:11;), we use an upper bound ¢(i,j) instead.

Definition 3.3: An assignment graph for an n-variable
function f(x,,x,, -+, x,) is a complete graph satisfying the
following conditions:

1) G has n nodes (n = 2r);

2) the weight of the edge (i,j) 1s g(i,).

885

Algorithm 3.1 (near-optimal assignment of the input vari-
able to the decoders):

1) Obtain a near-minimal sum-of-products expression
for f.

2) Obtain the assignment graph for f.

3) Cover every node by disjoint edges so as to minimize
the sum of the weights of the edges.

4) Obtain the partition of the variables corresponding to the
edges.

Because Algorithm 3.1 is a heuristic one, it has no guarantee
for optimality.

Example 10: Consider the function in Example 4.

1) The given expression is minimum.,

2) Fig. 7 shows the assignment graph for the function of
Example 4.

3) Edges (1,3) and (2,4) cover all the nodes of G. The
sum of the weight is 7 + 8 = 15 and is the minimum.

4) The partition of {X} is X = (X,,X;), where X, =
(x,x3) and X, = (X2, X4).

5) Fig. 8 shows the PLA with the input assignment
optimized. (End of Example)

In Algorithm 3.1, the most time is spent for obtaining a
near-minimal sum-of-products expressions; the other time is
relatively short.

IV. OuTPUT PHASE OPTIMIZATION

When realizing a multiple-output function (fq, fi, 5 fa=1)
by PLA’s, we often have the option to realize either f; or f; for
each output. The freedom comes from the acceptability of
either form as input to the next level. Since there are 2™
different output phase assignments for m-output functions,
a nonexhaustive heuristic method is desired [4]. In this
section, an efficient heuristic method for the problem is
described [22].

A. Double-Phase Characteristic Function

First, we will introduce a double-phase characteristic
function which represents a PLA with 2m outputs

thfla' " ’fbn—h}by}-]" ¥ 'and.]?mﬂ-

Definition 4.1: Consider a set of m binary functions
fi:XP,—B
i=1
where
(j=0,1,---m — 1)
and
Pf={0,l,"‘,p;— 1

pi = 2 if a two-level PLA is used and p; = 4 if a PLA with
two-bit decoders is used. A double-phase characteristic
function is defined as

F[):XPJ-XMD—)B

i=1

where

Mﬂz{osly-"szm - l}

886
|
I 2
I
4 8
3 4
1
Fig. 7. Assignment graph.
rttTTTO
X — t f
1 Il
T T
| 1
I T
X3 — | !
| |
Ra— t |
i t
: “+
Xy — }]
* Baubosknadleclonds]
FrTTTTTO
t 1 fo
} E3 t f|
} * | f
0 DO I B -
Fig. 8. PLA for ADR2 (optimal assignment of input variables),
and
FD(X|,X2, i ‘Xruj)

_ filX. Xz, -, X,) (j
fj—m(XI-JX% T ,Xr;) (J

=0,1,---,m — 1)
=mm+ 1, 2m — 1).

Lemma 4.1: Fp can be represented by the following
expression:

?}:D(Xlaxzs.“‘XnyY]= v

51,85,

Xf1 . X%’z..

L8R

.Xﬁr. - YR
where §;, C P;, and R C M,.

Example 11: Let us optimize the output phase of the
two-bit adder ADR2 in Example 10. Let the partition of
the input variables X = (x;, x5, x35,x5) be X; = (x;,x;) and
X; = (x;,x4). An array for the double-phase characteristic
function is

(0001 —1111—1 0 0 0 0O O
0111—0001—1 0 0 0 0 0
0110—1110—0 1 0 0 0 0
1001—0001—0 1 0 0 0 O

5, — ir—o0110—0 0 1 0 0 0
1111—1001—0 0 0 0 0 1
1000—1111—0 0 O I 0 O

0110—1110—0 0 0 1 0 0
0110—0001—0 0 0 1 0

L1001 —1110—0 0 0 0 1 0J

%, can be minimized to

[EEE TRANSACTIONS ON COMPUTERS, voL. C-33, No. 10, OCTOBER 1984

X, X, i h L B
T0001—1111—1 0 0 0 0 0] ¢
0110—1110—0 1 0 1 0 0| o
1001—0001—0 1 0 0 0 O] o
gn | 0110—0001—1 0 0 0 1 Of o
He 1137~ 01100 0 I O O O}
1000—1111—0 0 0 1 0 O ¢
1001 —1110—0 0 0 0 1 0| ¢
L1111—1001—0 0 0 0 0 11 o

Note that %[represents a minimal PLA which realizes
fos fis fos foo fiy fo simultaneously. (End of Example)

B. Idea of the Qutput Phase Optimization

The idea of the near-optimal output phase assignment algo-
rithm will be illustrated by using the example.

Consider %3 of Example 11.

1) In order to realize f, only, two cubes are sufficient.

Proof: ¢, shows that if X, = 11 and (X, = 00, 01, 10,

or 11), then f = 1. ¢4 shows that if (X, = 01 or 10) and
X, = 11, then f, = 1. No other input combination makes
fi=1 (Q.E.D.)

In a similar way, we can see the number of cubes to realize
other functions. The following table shows the number of
cubes which is sufficient to realize each function:

e ¢ e g fo i h
Number of cubes ‘ 2 2 1 2 2 1

Function

2) In order to realize both £, and f, simultaneously, three
cubes are sufficient.

Proof: ¢, shows that if X; = 11 and (X, = 00, 01, 10,
or 11), then f; = 1. ¢, shows that if (X; = 01 or 10) and
X, = 11, then f, = f; = 1. ¢; shows that if (X; = 00 or 11)
and (X, = 00, 01, or 10), then /, = 1. No other input combi-
nation makes f; or f; one. (Q.E.D.)

In a similar manner, we can know the number of cubes
which is sufficient to realize two functions simultaneously.

3) In order to realize f;, f;, and f, simultaneously, four
cubes are sufficient.

Proof: ¢, shows that if X, = 11 and (X, = 00, 01, 10,
or 11), then f; = 1. ¢, shows that if (X; = 01 or 10) and
X, = 11, then fy = fi = 1. ¢; shows that if (X, = 00 or 11)
and (X, = 00, 01, or 10), then f; = 1. ¢y shows that
if (X, = 00,01, 10,or11)and (X, = 00 or 11) tha::nj‘”1 =]
No other input combination makes f, or f, or f, equal
to one. (Q.E.D.)

4) In order to realize fy, fi, f>, fo, fi. and f> at the same time,
all 8 cubes are sufficient.

Proof: Theorem 2.1.

From 1)-4), we can see as follows.
Proposition 4.1: The number of products which is suf-
ficient to realize a set of functions is equal to the number of
cubes which have 1’s in the corresponding outputs in ¥,
Definition4.3: Anassignmentvector v = (U, vy, """, Uy 1)

(Q.E.D.)

SASAQ! PROGRAMMABLE LOGIC ARRAYS

is a binary vector which denotes the output phase assignment

= (fo% f 0, fimy) where
; ifv, = 1
f:’,z J_fj _\'J andj:O‘]_ om— 1.
: 5 ity =0

From Proposition 4.1 and Definition 4.3, we can formu-
late the near-optimal output phase assignment problem
as follows.

Problem 4.1: Let F} be a minimum sum-of-products ex-
pression for Fp, v be an assignment vector, and %} be a set
of the cubes of F}; which have 1’s in the corresponding output
of F¥. Find a vector v which makes ¢(}) minimum.

When m (the number of output functions) is small, then we
can solve Problem 4.1 by exhaustion. But when m is large,
we need an algorithmic way to solve it.

Note that only the output part of Fj contains all the
information necessary to find an optimal solution for
Problem 4.1.

Definition 4.4: Let FJ
expression for F.

An output matrix: G = {g;} for FJ is the output part of
F5. gy = 1 iff the jth output of the ith cube is one, and
gy = 0, otherwise.

Example 12: The output matrix G for ¢

be a minimal sum-of-products

JJI

of Example 11

is

fohfs hEE
(100 0007 p
010 100 p,
010 000 Da

G-|100 010 p
001 000 ps
000 100 s
000 010 P
LOO0OO 00 1) p

(End of Example)

By using the output matrix, Problem 4.1 can be restated
as follows.
Problem4.2: Let G

assignment vector

= {g;} be an output matrix. Find an

v = (v, u,)

which makes

I m— 1 2m—1
N ﬂ{(\/gu 'v,.-)\/(\/ gy *)}
i=1 y =0
minimum.

From here, we will consider a method to find an optimal
solution for Problem 4.2 by using covering expressions. By
inspecting the output matrix G of Example 12, we can see
as follows.

In order to realize each function, the following cubes are
necessary:

887

For f,,p, and p, : For fy,p, and pg :

For fi,p, and p; : For f,,p, and p; :

For f,ps

The above six statements can be combined into following
three statements.

In order to realize (f, or}}-),(j = 0,1,2), the following
cubes are necessary:

: For }:i'spﬂ‘

For (f, or f,),
For (f; orf;), (p.and p3) or (p, and py):
For (forf), ps

(pi and py) or (p; and p):

or p,.

From the above three statements, we have the following
statement. In order to realize (£, or f,) and (fi orf Jand (f5 or
7). we need {(p, and p,) or (p; and p;)} and {(}'?3 and p;) or
(ps« and p;)} and {ps or p}.

We can simply represent the condition by the following
expression:

fo fo A fi)’f j|f

Q =(pr PN/ P2 ps) (P2 PN/ Papa) v (Ps\/ ps)

This is called a covering expression, which will be formally
defined in Definition 4.5. If we realize (f;, fi, .}, we need
(propa)(p2ps) = ps = pi*p:ps paps, ie., the prod-
uct of the three first terms in the parenthesis of the expres-
sion. In this case, we need five cubes. If we realize (f;, f,, f),
we need (py* ps) * (ps*p7) * (ps) = p1 * pa* ps - py, ie., the
product of the first, the second, and the first terms in the
parenthesis of the expression. In this case, we need four
products. For other output phase assignments, we can obtain
the number of cubes in a similar way. It is easy to see that by
expanding Q into sum-of-products expression, we can obtain
the number of cubes necessary to realize for all possible
output phase assignments. Table V shows the number of
cubes which are sufficient to realize for each output phase
assignment,

Definition 4.5: Let G be an output matrix. A covering
expression Q of G = {g;} is

)= A H/\(p.- vE(-.J-)}

 VlAmvae)]

o(p,,ps

where ¢ is the number of rows in G.

Example 13: The covering function of G in Example 12 is
Q(pip2 = .p) = (P PN/ P2 Ps) * (P2 P3N/ ps po)
(PSP =Pt D P SN PP Py et P\ Py

"PaPs PIN P Pat P DsN P2t PstPs P\ P2t ps
Ps " Ps\/ P2y Ps"P1N P2 PatPepPrc Py
(End of Example)

888

C. Output Phase Optimization Algorithm

Algorithm 4.1 (near-optimal output phase assignment):
1) Obtain the double-phase characteristic function Fj, and
minimize it.
2) Obtain the output matrix G.
3) Obtain a (near-) optimal assignment vector v for G as
follows.
Let m be the number of outputs.
Whenm = 10, obtain v by expanding covering expres-
sion.
When 10 < m < 30, obtain v by a branch and bound
method.
(See Algorithm A.1 and Example A.1 in Appendix A.)
When m = 30, obtain v by a heuristic method which
produces a near-optimal solution. (See Algorithm A.2 and
Example A.2 in Appendix A.)
4) F* = (foofi', -+, fa') is a (near-) optimal output
phase assignment.
5) Let s be the number of terms to realize F".
Theorem 4.1: Multiple-output function F" =
(fo* fi' =+, funy') can be realized with at most s products,
where v and s are obtained in Algorithm 4.1.
Proof: Clear from the explanation after Example 11.
(Q.E.D.)
Example 14: In Example 13, the product term p,p;psps
has four letters and it is minimum. The double-phase charac-
teristic function corresponding to p, p; ps pe 18

0110—1110—010100

1001 —0001 — 010000
Fp =

1111—0110— 001000

1000—1111—000100

Thus, F¥ can be realized with at most four terms and the
assignment vector for itis v = (0, 1, 1).

Obtained output phase assignment is (fo, fi, f5).

The characteristic function for (f;, f,, f2) is

0110—1110—110
1001 — 0001 —010
1111—0110—001
L1000 —1111— 100

(End of Example)

G¥ =

Fig. 9 shows the realization of ADR2,

D. Functions with Don't Cares

For the functions with don’t cares, step 1) of Algo-
rithm 4.1 should be modified as follows.

1) Obtain the double-phase characteristic function Fj, and
double-phase don’t care characteristic function Hy
(Definition 4.6). Minimize Fp by using H.

Definition 4.6.: Let a set of m binary functions
hi:X'"_,P, > B(j =0,1,---,m — 1) denote the un-
specified part of the functions: i.e., jth function is undefined
iff h; = 1. A double-phase don’t care characteristic function
is defined as

Hp: X P, X Mp — B

i=

IEEE TRANSACTIONS ON COMPUTERS, VOL, C-33, No. 10, OCTOBER 1984

where
Hp(X,, X5, -+, X0 J)
hi(X,, X5, - -+, X,)
- whenj =0,1,---,orm — 1.
him(X), X5, 0, X,)
whenj =m,m + 1,-++ . 2m — 1.

Example 15: Consider the following 3-input 3-output
function with don’t cares:
[10—10—10—100—‘

10-10-01-100
10-01-10-011
10-01-01-101
01-10-10-011
01-10-01-110
L01-01-10-001

r10-10-01-011
10-01-01-011
01-10-10-100
01-10-01-001
| 01-01-01-111
1) The double-phase characteristic functions are
[10-10-10-100000 |
10-10-01-100000
10-01-10-011000
10-01-01-101000
01-10-10-011000
01-10-01-110000
01-01-10-001000
10-10-10-000011
10-10-01-000011
10-01-10-000100
10-01-01-000010
01-10-10-000100
01-01-01-000111
L 01-01-10-000110_

10-10-01-0110117
10-01-01-011011
01-10-10-100100
01-10-01-001001
01-01-01—111111 |
Note that the output part of H,, is doubled by the simple
concatenation of the copy.

2) Fp is minimized to
11-11-01-101000
10-01-11-100011
01-10-11-011000
10-01-10-011100
01-01-11-001110

Fp

HD:

¥p =

SASAO! PROGRAMMABLE LOGIC ARRAYS

s e ol ol |
X — } t
1 1
T T
| 1
T 1
Xy — : 1
I
o — t t
f t
i —
Kg— - |
4 bkl ol
| R i T i -
: *—+— fo
—% —
! e a8
Ly 4+ 44
Fig. 9. PLA for ADR2 (output phase optimized).

3) The output matrix for %} is

1010007 p,
100011 | p,
011000 | ps
011100 | p,
001110 | ps

G:

4) The covering expression is
Q(p1, P2 p3s Pas P3)
=P P2/ psps) (P pa\/ P2 ps)
“(pi psopatps\ op2)
SEP PPyt PPN PP Py Py
NP P2 Py PatPsN PPt Ps
NPLTPs PatPs N PPyt Pat Ps
NPT P2 Pt patps N patpact ps.
5) The product p, * p; * ps has three letters. The double-
phase characteristic function corresponding to p, * p, * ps is

11-11-01-101000
10-10-11-100011
01-01-11-001110

¥ —
‘ﬁm il

6) The assignment vector is v = (1,0,0).
7) The obtained output phase is (fy, fi, f2)-
(End of Example)

V. EXPERIMENTAL RESULTS

A. Assignment of Input Variables and Output Phase
Optimization

Table VI shows the number of columns of PLA’s for
arithmetic functions. For example, the third row shows the
number of columns for 3-bit adders. It is a 6-input 4-output
function, and originally has 63 product terms. For the two-
level PLA, it requires 31 columns when the output phase is

889

trivial, and 25 columns when the output phase is near-
optimal. For the PLA’s with two-bit decoders, it requires
23 columns when the assignment of the input variables to
the decoders is trivial, ten columns when the assignment is
near-optimal, and eight columns when both the assignment of
the input variables and output phase are near-optimal.

From Table VI, we can see that PLA s with two-bit decod-
ers are, on the average, 15 percent smaller than two-level
PLA’s when the assignments of the input variables are trivial,
and 30 percent smaller when the assignments of the input
variables are near-optimal. The output phase optimized
PLA's are, on the average, 10 percent smaller than output
phase trivial ones.

Table VII shows the number of columns for control circuit
for microprocessors. In this case, PLA’s with two-bit decod-
ers are, on the average, 10 percent smaller than two-level
PLA’s when the assignments of the input variables are trivial,
and 20 percent smaller when the assignments of the input
variables are near-optimal. However, the output phase opti-
mization reduced sizes only 3—6 percent,

Note that the size for the logarithm function (n = 6) for
Table VIis worse than expected. This is due to the heuristics
used in Algorithm 3.1 and the minimization algorithm
MINIII. This shows that the heuristics or MINIII are not
perfect, but they usually produce good solutions in a reason-
able time.

Incidentally, for randomly generated functions of eight-
variables (¢ = 40 percent; the number of the minterms is, on
the average, 102.4), PLA’s with two-bit decoders are, on the
average, 24 percent smaller than two-level PLA’s when the
assignments of the input variables are trivial, and 32 percent
smaller when the assignments of the input variable are
optimal [14]. In this case, the optimal input variable assign-
ments were obtained by exhaustion. There are 105 different
ways for partitioning eight-input variables into four groups.
We minimized 105 different expressions for each functions.
Minimization of the expressions was done by using Quine—
McCluskey method which obtains absolute minimum
solutions.

B. Minimization Program

A PLA minimization program MINI [4] have been en-
hanced for the new system. The new prozram MINIII has the
following features.

1) Ituses a fast recursive complementation algorithm [20)]
instead of the disjoint sharp algorithm [4].

2) It detects all the essential prime implicants without
generating all the prime implicants (algorithm is shown in
Appendix B).

3) It has a special slim operation which will reduce the
connections of both the aND and the or array. This operation
is vitally important for both the input variable assignment and
the output phase optimization.

4) It is about 4—10 times faster than original MINI.

The numbers in the parenthesis in Tables VI and VII show
the number of essential prime implicants. In the case of
the control circuits, more than a half of the prime implicants
in the solutions were essential in most cases. This fact

290

considerably speeds up the minimization process for the
control PLAs.

C. Computation Time

All the programs are written in APL and run on IBM 3081k
with 2 Mbytes of storage. Computation time depends on the
size of the problem. For example, the 4-bit multiplier took
about 3 min to obtain a PLA with near-optimal input
assignment (89 products), and an additional 3 min to obtain
a PLA with output phase near-optimal (80 products). In this
case, almost all the computation time were spent for
minimizing logic expressions.

VII. CoNCLUSION

Sixteen control circuits and 12 arithmetic functions were
minimized under five conditions.

1) When the assignment of the input variables to the decod-
ers were not considered, PLA’s with two-bit decoders were,
on the average, 12 percent smaller than two-level PLA’s.

2) When the assignment of the input variables to the
decoders were near-optimal, PLA's with two-bit decoders
were, on the average, 25 percent smaller than two-level
PLA’s.

3) In the control circuits, more than half of the prime
implicants in the solutions were essential in most cases.
Thus, the detection of the essential prime implicants seems to
be useful for these kind of problems.

4) In the arithmetic functions, the output phase near-
optimized PLA’s were, on the average, 10 percent smaller
than nonoptimized ones.

The number of the columns for n-bit adders is obtained as
follows:

6-2"—4n -5
a4+ 1

for two-level PLA’s.

for PLA’s with two-bit decoders.

APPENDIX A
NEAR-OPTIMAL OQUTPUT PHASE ASSIGNMENT

Algorithm A.l (Optimal assignment for G):

1) Let 2m be the number of columns of G. If m = 10, then
obtain v by exhaustion (using covering expression).

2) If G has a row with all 0's, delete it from G.

3) If G has a column with all 0’s, then let it be /1, and do
step 6) and Stop.

4) (When we can select a column without loosing the op-
timality, select it.) Let AG[i] denote the sum of the ith
column of G (i = 0,1, -+,2m — 1). If the row(s) which
have 1’s in the 7 1th column, have singleton 1 in the row(s),
and if the row(s) which have 1’s in the /2th column have
singleton 1 in the row(s), where 12 = 11 + m (mod 2m),
then select either /1 or I 2, which has smaller AG[/]. Let it be
i 1. Do step 6) and then Stop. (For example, we can arbitrary
choose either f> or f, in Example 12.)

5) (Branching) Find i such that the difference of AG[i]
and AG[i + m] is maximum, where 0 =i =m — 1. If
AG[i] = AG|i + m] then Il = i: (choose to realize f;).

[EEE TRANSACTIONS ON COMPUTERS, VOL. C-33, No. 10, OCTOBER 1984

If AG[i] = AG[i + m] then I'l =i + m: (choose to
realize f).

6) (Obtain the solution which includes /1).

6.1) Reduce G by deleting the rows which have 1’s in
the f 1th column. Then, reduce G by deleting 7 Ith and /2th
columns, where I2 = [1 + m (mod 2m).

6.2) Let G1 be the reduced matrix. Find the optimal
assignment by using this algorithm.

7) Let COSTI be the number of cubes to realize function
by using the optimal assignment vector of G1.

8) (Bounding) By using Algorithm A.2, obtain LB, the
lower bounds on the number of cubes to realize functions in
G when we select [2 instead of /1. If LB = COST1 then
choose /1 and Stop.

9) (Obtain the solution which includes {2) Let COST2 be
the number of cubes to realize the function in G when we select
12 instead of I1. If COST1 > COST?2 then choose the solution
which include 72 and Stop. Otherwise, choose the other solu-
tion obtained by step 6), and then Stop.

Example A.l: Consider the output matrix G in
Example 11.

1) This step is skipped for illustration.

2) There is no row with all 0’s.

3) There is no column with all 0’s.

4y AG=1[2 2 1 2 2 1],m =3.Letll =12, and
12 = 5. Rows ps and pg have singleton 1’s. Because
AG|[2] = AG[5], we can arbitrary choose /1 = 2, which
means we choose to realize f;. Then, we will do step 6).
Reduced matrix is

0 d 3 @
[1 “@'<0 0
g L ¢
0 1.-0.0
Gl =|'F 005
0010;
i B 2R
o 0 0 0]

1) Now we are going to obtain an optimal assignment
for G 1.
2) The last row is all 0’s, so delete it.

0« 1418344
o
01 10
0100

61_1001
0041150
Lo 0 0 1.

3) There is no column with all 0’s.

HAG =12 2 2 2]

5) We can arbitrarily choose /1 = 0 (choose to realize f;).
6) Reduced matrix is

SASADC PROGRAMMABLE LOGIC ARRAYS

1 4

0
0

2 =
G 0
1

1
1
0
0

1) Now, we are going to obtain an optimal assignment for
G2.
2)

3) There is no column with all 0’s.

4y AG2 = |2 1]. We select the second column, i.e.,
Il =4 and 12 = 1 (choose to realize f).

7) Obtained assignment is (f,f, ;). COSTI = 4.

8) If we select {2 = 3 instead of /1 = 0 (i.e., if we
choose to realize f;), the reduced matrix is

0 0

0

G2 =10 1
0 0

0 1

In Algorithm A.2
1) AG =[1 2]
2) Lower bound on the cost of G2 is 1.

8) LB =1+ 2+ 1 =4. Because COST1 = LB,
(fo, fis f) is an optimal assignment. (End of Example)

Algorithm A.2 (Lower bound on the cost of G):

1) Let AG[i] be the sum of ith column. (i = 0,
Ly . 2mi— 1)

2) If m =1 then LB = min {AG[i], AG[m + 1]} and
Stop.

3) If m > 2, then let /1 be the argument which
makes min{AG[i],AG|i + m]} maximum, where i =
0,1.---,m — 1. Reduce G by deleting the rows which have
I’s in the /1th or /2th columns, where I2 =71 + m
(mod 2m). Then, reduce G by deleting /1th and [2th
columns. Let G 1 be the reduced matrix. Find the lower bound
on the cost of G 1 by using this algorithm. Let it be LB 1. Let
LB = LB1 + maxy min {AG[i],AG[i + m]}. Stop.

Example A.2: Let us obtain a lower bound on the cost of
G in Example 12 by using Algorithm A.2.

HDAG=1(2 2 1 2 2 1].

2) Il = 0 (1st column). Reduced matrix G 1 is

1

oo o~

S o= O |
o= O O ||
— O o O |

3) Now, we will obtain the lower bound on the costof G 1.

891

) AGL =11 1 1].
2) I'1 = 1 (choose 1st column).
3) Reduced matrix G2 is

2 5

sl) A8
o 1

The lower bound on the cost of G2 is LB2 = 1. The lower
bound on the cost of G1is LB1 =1 + 1 = 2. Hence, the
lower bound on the costof G isLB = 2 + 2 = 4,

(End of Example)

Algorithm A.3 (near-optimal assignment for G):

1) If the number of columns of G is smaller than 20,
obtain v by exhaustion.

2) If G has a row with all 0’s, delete the row from G.

3) Let WGi] denote the number of 1’s in ith row
(i =1,2,---,0. Let AG[j] = 2,G[i,jl/WG[i].

4) FindJ suchthat AG[J]isminimum. If0 = J =m — 1
then choose to realize f;. If m = J = 2m — 1 then choose to
realize f;.

5) Letil ="J. Do step 6.1) of Algorithm A.1.

6) Let G1 be the reduced matrix. Apply this algorithm
for G 1.

Example A.3: Letus obtain a near-optimal assignment for
G of Example 12 by Algorithm A.3.

1) This step will be skipped for illustration.

2) There is no row with all 0’s.

HIWG=1[1 2 1 2 1 1 1 1]

0 1 2 3 4 1= 5

AG =[1.5 1.5 1.0 1.5 1.5 1.0]

4) J = 2 (choose to realize f).
5) Reduced matrix is

=

4
(1 0 0 0]
01 1 0

Glzo 1 00
1 0 0 1
00 10
LO 0 0 14

6) Now, we will obtain a near-optimal assignment for G 1.
2) There is no row with all 0's.
HWCL=11 2 1 2 1 1]

0 1 3 4
AG1 =[1.5 15 15 1.5]

4) J = 0 (choose to realize f).
5) Reduced matrix 1s

§92

I

GO—-'—“
— O o O

6) Now, we will obtain a near-optimal assignment for G 2.
2)

HWG2=1[1 1 1]
AG2 = |2 1]
4) J = 4 (choose to realize }1). Hence, obtained assign-
ment is (fy, fi, f2). (End of Example)

AppENDIX B
DETECTION OF THE ESSENTIAL PRIME IMPLICANTS WITHOUT
GENERATING ALL THE PRIME IMPLICANTS

In this section, we will show a fast essential prime impli-
cant detection method without generating all the prime impli-
cants. Although this method cannot detect the secondary
essential prime implicants (prime implicants which corre-
spond to the secondary essential rows [25]; also called sec-
ondary extremals [7]), our experiments show that this
method is much faster than the local extraction algorithm
[21]. This algorithm is also faster than that of [19].

Definition A.1: A product P = X3 - X3+ - - X3 is called
an implicant of F if F is equal to one whenever P is equal to
one, and denoted by P < F. P is called a prime implicant of
FifP<Fand S (i =1,2,:-+,n) are maximal. When
P = F, F is said to cover P.

Definition A.2: Let ¢ be a cube of F, and let v be a min-
term of c. If the prime implicant which covers v is unique,
then ¢ is an essential prime implicant, and v is distinguished
minterm.

Definition A.3: A sum-of-products expression is said to
be minimum if it consists of the minimum number of prime
implicants.

Lemma A.1: A minimum sum-of-products expression for
F contains all the essential prime implicants of F. if any.

Definition A.4: Let ¢, and ¢, be cubes where

=X XP- XS and ¢ =X] XD XD,

A consensus of ¢, and ¢, is

n=m

COIIS(['l,)=) X:]“IDTI . X-;zm"z o .X;_TEUTf arion Xﬁnﬁ?‘n_

i=1

Definition A.5: Let ¢ be a cube and § be an array.
A consensus of ¢ and 9§ is defined as cons(c, %) =
U cons(c, ¢;).

Theorem A.l: Suppose that F can be written as & = ¢ \/
%4, where ¢ is a prime implicant. Let # = cons(c¢, G). If
¢ £ 7, then ¢ is essential.

Proof: Let ¢ be a prime implicant where ¢ = Xiu -
X5+ --- X% and ¢ £ ¥. Because ¢ £ ¥, there exists

IEEE TRANSACTIONS ON COMPUTERS, VOL. €-33, No. 10, OCTOBER 1984

aminterm, v = X{' - X+ Xft - X% such thatv € ¢ - ¥,
where a; € §; (i = 1,2,++,n). Suppose that a prime
implicant ¢’ which is different from ¢ covers v, where
¢ =XN.x%- - XTk-.-XT Because ¢ N ¢’ # ¢ and
¢ C ¢', we can assume that T, — S, # ¢, and that there
is a minterm in ¢’ such that v’ = X{l « X§+ -« Xyl « Xt -
X e« X% where by € T, — S,

Because v’ & ¢ and v’ € ¢', v’ is a minterm of ‘4. There-
fore, there exists a cube d in 4 which contains v'. Letd =
XProxPro. . XPe---XPr Note that a; € D, (i = 1,
2.-++-.n,i # k)and b, € D,. Consider a consensus of ¢ and
d: h, = cons(c,d) D XPPv .« X5:MP2e o X500k oo X 3000
Because ¢; € S, N D; (i # k) and a, € S, U D;, we have
v E }Ik.

However, this contradicts the hypothesis that v € ¢ - %
because i, = #. Hence, the prime implicant which covers ¢
is unique. In other words, v is distinguished minterm and
¢ is an essential prime implicant. (Q.E.D.)

Example A.4: Consider an array consisting of prime
implicants
01 —01—1110 €1
01—10—0111 e
100150111 ¢
10— 11—0001 C4

=

Let us find the essential prime implicants of the array. F is
written as F# = ¢, \/ %4,, where

¢ = {01 —01—1110}
and

01 =104 0811] 0. <
90200 114 - i cs
10— 11—0001 Co

G =

First, make a consensus of ¢; and %,.

01—11—0110
%1 = CGI’]S(C[,(Q]) ¥ [11_0]—0110]

Because ¢; £ #,, ¢, is an essential prime implicant.
F is written as F = ¢; \/ %, where

{01 —10—0111}

Il

Cs

and

01 —01—1110 I
10—01—0111 €3
10— 11—0001 Cs

('Qg:

Similarly, make a consensus of ¢, and %,

01—11———0110}

#y = cons(cy, ;) = [11_ 10—0001

Because ¢; = 9, ¢, is not essential. Similarly, we can see
that neither ¢; nor ¢, are essential. (End of Example)

In Theorem A.l, we have to check whether ¢ =< ¥ or
not. Checking it by the sharp operation [9] is quite time
consuming. To check it, we have developed special

SASADY PROGRAMMABLE LOGIC ARRAYS

algorithms [20], [23], which are much faster than the sharp
operation.

APPENDIX C
COMPLEXITY OF ADDERS

In this section, we consider the number of columns of PLA
with two-bit decoders for n-bit adders.

Let us design the following n-bit adder by using a PLA
with two-bit decoders:

Xn-1 Xp-2" " "X Xo

+) ¥eur Vet Yo

Zn Zn—t Zw-277"21 Zp (Sum)
Ca-1 Ca—2" 7€) Co (carry)

Let the partition of the input variables be X; = (x;, y;), where
(i =0,1,---,n — 1). We have the following relations
where @ denotes EXCLUSIVE OR. Note that x; & y;, x; & v,
x; N/ yi, and X; \/ y; can be realized by single term using the
two-bit decoders.

z; = (x; & }";} 'Er'--l v (x; GB}_'F] O
X N e a] rie

G =X YV (e V) 8

~
Il

In = Cpoye

Let 1(f) be the number of terms in the expression for f;
we have

t(z;) =ualer) + tcia),
tle;) =1 + tlc; I).
tic,) =1+ t{ey).

and

Because 1{(¢c,) = t(cy) = t(zy) = 1, we have
tic) =t(c) =i + 1

t(z) = 2i, wherei = 1,2, -,n — 1.

Note that #(z,) = t(c,-;) = n. Let W be the number of
columns for the PLA. Then,

" n—1

W = Zz{:;) =1+ ZI{_Z,-) +an=n"+1.
i=0 i=]
If we realize (z,,z,-y, "+, zp) instead of (z,, Z,—y, * * * , Z0),

i.e., complement the most significant output, the size of the
PLA becomes smaller. Note that

Iy = €y = Eﬂ' 1" }'—'n 1 v (xn' 1 @ Y l.] Oy
and
Zy—| = (..Y,, 1 @ _.{'r: iJ tCp-2 \/ {xn—] EB J‘n l) * Cp-2-

z, and z,_, share a term (x,_, & v,_;) * ¢,-». Therefore, we
have

n=1

W=21tz)=1+2tz)+1=n*—n+2.
=10

i=1

893

TABLE VIII
NUMBER OF CoLUMNS OF PLA's For n-BIT ADDERS

Two-level PLA

Qutput Phase Output Phase
MNon — Optimized Optimized
Without
Carry Inputs | 62" —dn—5 6+2"—4n-3
With
| Cacry lnputs | 10.2"-4n-9 8a2"—d4n-—7

PLA with decoders

Dutput Phase O‘ulpuL Phase
Man — Optimized Optimized
Without Carry
(2.2,...,2) nt 41 nlen+2
With Carry
(22,5,23:1) (n+ 1) nan+l
With Carry
(2.2,...2.3) n41 nien+2

In a similar way, we obtain the size of the PLA’s with
carry inputs, and that of two-level PLA’s. The number of
columns which are sufficient to realize n-bit adders is sum-
marized in Table VIII. In Table VIII, the number in the
parenthesis shows the numbers of bits for each decoder.
(2,2,2,-+-,2.1) shows that a 1-bit decoder is used for
the carry input, whereas (2,2,2,--,3) shows that a 3-bit
decoder is used for xy, ¥y, and the carry input.

Although the minimality of the number for two-level
PLA’s in Table VIII has not been proved, the number is
conjectured to be minimal for arbitrary n. The minimality for
small n has been verified by using exhaustive methods. The
minimality for PLA’s with two-bit decoders in Table VIII has
been proved [24].

ACKNOWLEDGMENT

Dr. R. K. Brayton provided all the data for the control
circuits as well as the results of his program ESPRESSO.
Dr. S.J. Hong supplied the original APL MINI program and
showed his unpublished works on “input variable assignment”
and “output phase optimization” which were done many
years ago with his colleague. Dr. K. Ishikawa, who was a
Ph.D. degree student of the author, patiently worked with the
author for developing a preliminary version of this system at
Osaka University, Osaka, Japan.

REFERENCES

[1] H. Fleisher and L. I. Maissel. “An introduction to array logic,” IBM J.
Res. Devel., vol. 19, pp. 98-109, Mar, 1975,

[2] 5. Muroga, VLSI System Design. New York: Wiley, 1982,

[3] M. Davio, J.P. Deschamps, and A. Thayse, Digital Svstems with
Algorithin Impiementation. New York: Wiley, 1983.

[4] S.J. Hong, R.G. Cain. and D. L. Ostapko, “MINI: A heuristic approach
for logic minimization,” IBM J. Res. Devel., pp. 443-458, Sept. 1974,

[5] P. Bricaud and J. Campbell, “Multiple output PLA minimization:
EMIN.” in Proc. WESCON '78, paper 33/3.

[6] A. Svoboda and D. E. White, Advanced Logical Circuit Design Tech-
migues. New York: Garland, 1979,

894

7
(8]

[91
[10]

(1]

[12]

[13]

[14]

(15]

[16]
(17

(18]

(19]
(20]

I.P. Roth, Computer Logic, Testing and Verification. Rockville, MD:
Computer Science Press, 1980.

R. K. Brayton, G. D. Hachtel, L. A. Hemachandra, A. R. Newton, and
A.L. M. Sangiovanni-Vincentelli, “A comparison of logic minimization
strategies using ESPRESSQO: An APL program package for partitioned
logic minimization,” in Proc. 1982 Int. Symp. on Circuir and Systems,
May 1982, pp. 42-48.

D.L. Dietmeyer, Logic Design of Digital Systems, 2nd ed. Boston,
MA: Allyn and Bacon, 1978.

D.W. Brown, “A state-machine synthesizer—SMS,” in Proc. 18th
Design Automat. Conf., June 1981.

S. Kang and W. M. vanCleemput, “Automatic PLA synthesis from a
DDL-P description,” in Proc. I8th Design Auromat. Conf., June 1981,
pp. 391-397.

L. I. Maissel and D. L. Ostapko, “Interactive design language: A unified
approach to hardware simulation, synthesis and documentation,” in Proe.
19th Design Automat. Conf.

G.D. Hachetel, A. R. Newton, and A. L. Sngiovanni-Vinventelli, “An
algorithm for optimal PLA folding,” JEEE Trans. Comput. Aided Design
Integrated Circuits Systems, vol. CAD-1, no. 2, pp. 63-77, Apr. 1982,
T. Sasao, “Multiple-valued decomposition of generalized Boolean func-
tions and the complexity of programmable logic arrays,” [EEE Trans.
Comput., vol. C-30, pp. 635-643, Sept. 1981.

Y.H. Su and P.T. Cheung, “Computer minimization of multi-valued
switching functions,” IEEE Trans. Comput., vol. C-21, pp. 995-1003,
1972,

P.L. Tison, “An algebra for logic systems — Switching circuits applica-
tion,” JEEE Trans. Comput., vol. C-20, pp. 339-351, Mar. 1971.

K. Ishikawa, T. Sasao and H. Terada, “An assignment method for pro-
grammable logic arrays with decoders,” Trans. IECE Japan (in Ja-
panese), vol. J65-D, pp. 797-804, June 1982.

——, “A minimization algorithm for logical expressions and its
bounds of application,” Trans. [ECE Japan (in Japanese), vol. J65-D,
pp. 797-804, June 1982.

——, “A simplification algorithm for logical expressions: A5" Trans.
IECE Japan (in Japanese), vol. J66-D, pp. 41-48, Jan. 1983,

T. Sasao, “A fast complementation algorithm for sum-of-products ex-
pressions of multiple-valued input binary functions,” in Proc. [3th Int.
Symp. on Multiple-Valued Logic, May 1983, pp. 103-110.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-33, No. 10, oCTOBER 1984

[21] J.P. Roth, “Algebraic topological methods in synthesis,” in Proc. Int.
Symp. on Theory of Switching, Apr. 1957 (in Annals Computai. Lab.,
Harvard University, Cambridge, MA, vol. 29. pp. 57-73, 1959).

T. Sasao, “An application of multiple-valued logic to a design of master-
slice gate array LSL,” in Proc. 12th Int. Symp. on Multiple-Valued Logic,
May 19582, pp. 45-54.

——, “Tautology checking algorithm for multiple-valued input binary
functions and their application,” in Proc. i4th Int. Svmp. on Muliiple-
Valued Logic, May 1984,

S.J. Hong, D. L. Ostapko, and H. Fleisher, private communication.
S. Muroga, Logic Design and Switching Theory. New York: Wiley-
Interscience, 1979.

[22]

[23]

(24]
(25]

Tsutomu Sasao (S'72-M’'77) was born in Osaka,
Japan, on January 26, 1950. He received the B.E.,
M.E., and Ph.D. degrees in electronic engineering
from Osaka University, Osaka, Japan, in 1972,
1974, and 1977, respectively.

Since 1977 he has been with Osaka University.
His research interests include design automation of
digital systems, switching theory, and application
of microprocessors. He specializes in the design of
PLA and application of multiple-valued logic to the
design automation. From February 1982, he spent a
year as a Visiting Scientist at the IBM T. J. Watson Research Center, Yorktown
Heights, NY, where he developed a PLA minimization system.

Dr. Sasao served as Asia Area Program Chairman of the 1984 International
Symposium on Multiple-Valued Logic, and is currently a member of the
Executive Committee of the IEEE Computer Society Technical Committee on
Multiple-Valued Logic. He has published three books on switching theory and
logical design in Japanese. He is a member of the Institute of Electronics
and Communication Engineers of Japan. He received the NIWA Memorial
Award in 1979,

