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Multiple-Valued Decomposition of Generalized
Boolean Functions and the Complexity of
Programmable Logic Arrays

TSUTOMU SASAO, MEMBER, IEEE

Abstract—Generalized Boolean functions are shown to be useful
for the design of programmable logic arrays (PLA’s), and the com-
plexity of three types of PLA’s is obtained by the theory of multiple-
valued decomposition. A two-level PLA consists of an AND array and
an OR array, and they are cascaded to perform a two-level AND-OR
circuit. A PLA with decoders consists of decoders, an AND array, and
an OR array. A three-level PLA consists of a D array, an AND array,
and an OR array, and they are cascaded to perform a three-level OR-
AND-OR circuit. It is shown that a generalized Boolean function f(.X,

Na, e Xl )'( B#i — B, where B = {0, 1}, is represented by a

=1

generalized Boolean expression of 2”i-valued variables X;; and f can
be directly realized by a PLA with decoders or a three-level PLA. To
realize a function of #-variables (n =2r), the following sizes are shown
to he sufficient: for a two-level PLA, (n + 1)27; for a PLA with two-bit
decoders, Xn + 1)27; for a three-level PLA, 27 + (3n + 11/2" + 2n2
Especially in the case of PLA with two-bit decoders, the following sizes
are shown to be necessary and sufficient: for an arbitrary symmetric
function, 3(n + 1)v/3"; and for a parity function, (n + 3)v/2".

Index Terms—Complexity of logic circuits, functional decompo-
sition, multiple-valued logic, programmable logic array, symmetric
function.

[. INTRODUCTION

ROGRAMMABLE logic arrays (PLA’s) are known as

an approach to implement logic circuits having low pro-
duction potential [1]-[4]. In this paper the complexity of three
types of PLA’s is discussed: a two-level PLA, a PLA with de-
coders, and a three-level PLA. The first type of PLA, a two-
level PLA, is shown in Fig. 1. It consists of an AND array and
an OR array. For example, the two-level PLLA in Fig. 2 realizes
the function of Table 1. The AND array generates products of
input variables, and the OR array generates sums of products.
This PLA corresponds to a two-level AND-OR circuit. We
define the size of this PLA as C(n) = (2n + m) W. The second
type of PLA, a PLA with decoders, is shown in Fig. 3. Each
decoder generates all the maxterms of its input variables. For
example, the PLA in Fig. 4 realizes the function of Table I. We
define the size of a PLA with decoders as (H + m)W. The
two-level PLA can be considered as a special case of a PLA of
this type, i.e., a PLA with one-bit decoders. The third type of
PLA, a three-level PLA, is shown in Fig. 5. [t is a PLA with
a programmable input decoders. The I array generates the
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Fig. 2. Two-level PLA for Table I.

sum of input variables. This PLA corresponds to a three-level
OR-AND-OR circuit. For example, the PLA in Fig. 6 realizes
the function of Table I. We define the size of this PLA as C(n)
=(2n+ W)H + Wm.

In Section Il we introduce generalized Boolean functions
and their expressions. They are useful for the design of PLA’s
with decoders or three-level PLA’s. Generalized Boolean
functions can be directly realized by PLA’s with decoders or
three-level PLA’s.

In Section III we introduce the theory of multiple-valued
decomposition of generalized Boolean functions. We use this
theory to obtain the complexity of PLA’s in Sections IV and
V. Section I11 is somewhat involved and the reader may skip
it for the first reading.

In Section IV, first we show that AND arrays of PLA’s with
decoders can be minimized by using generalized Boolean
functions, then we obtain the size of PLA’s with decoders for
various classes of functions.
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TABLE I
FOUR-VARIABLE FUNCTION
£y fg fpty  F
0 0 0 O 1
0 0 0 1 1
0 01 0 1
0::0 1 X 0
01 0 0 1
0: L 0 ol ik
01 10 0
0;i 1 1
1 0 0 0 1
1 0 0 1 0
1 01 0 0
1 011 1
1 1 0 0O 0
1 1 01 1
1 110 1
1 1 1 1 0
W |
g |
L4
AND array H

L.,

OR array

— ﬁﬂlﬁ”ﬁ:
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{01,10,11}
x V.rz A’I
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(00,0110}
1
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(b)
{a) PLA with two-bit decoders. (b) Two-bit decoder.

Fig. 3.

In Section V, first we show that AND arrays of three-level
PLA’s can be minimized by using generalized Boolean func-
tions, then we obtain the size of three-level PLA’s for various
classes of functions.

Table IT shows the sizes of PLA’s for various classes of
functions, which are obtained by using the theory of Section
[11. Table 111 shows the average size of PLA’s for randomly
generated functions, which are obtained by a computer ex-
periment.

Il. GENERALIZED BOOLEAN FUNCTION

In this section we introduce generalized Boolean functions
and their expressions.

An ordinary function f{x;, x3, -, x,): BXBX---XB

- B, B = {0, 1}, can be represented by a Boolean expression
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Fig. 4. PLA with two-bit decoders for Table 1.
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of two-valued variables x; ( = 1, 2, - -, n), whereas the gen-
eralized Boolean function f(X, X5,- -, X, ): BT X Bm2 X -
X B" — B, can be represented by a generalized Boolean ex-
pression of 2%-valued variables X; (i = 1,2,---,r).

Definition 1: Let X = (xy, x2, "+, Xx,) bea variable in B",
where B = |0, 1}. The set of the variables in X is denoted by {X}.
(X1, Xa, - -+, X,) is said to be a partition of X iff {X1} u {X2}
U UG = X 0 G = 6 % ), and [} = ¢ for
all i and j. The number of the variables in {.X;} is denoted by
d(X;).
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TABLE 11
SIZES OF PLA'S WHICH ARE SUFFICIENT TO REALIZE n-VARIABLE
FUNCTIONS
Two-level PLA FLA with twe=bit decoders Three-level PLA —l
n Parity Arbitrary) Symmetcric| Parlcy Arhitrary | Symmetcic | Parity
function Eunccion | fencticn function Eunction Eunction | functlan
b 516 208 117 52 282 258 196
& 2,176 1,088 439 136 T84 572 332
10 10,752 5,376 1,701 336 2,216 1,168 GED
12 51,200 15,600 6,075 200 6,752 2,317 1,032
14 237,368 118,784 21,141 1,856 22,280 4,670 1,600
16 1,081,344 540,672 72,171 5,224 | 78,382 B, 740 2,320
L. - X
1,,0 1 1,.m ri 1 1, zm | "
n (nt3)2 si12" | St 3| ()2 | (o
TABLE 11

AVERAGE SI1ZE OF PLA’S FOR RANDOMLY GENERATED FUNCTIONS

Two=level PLA ] FLA with two-bit decoders
d: densicy F d:density
n 10% 20% 0% 40% 0% | 103 20% 30% 40% 30T
] 5.4 109.2 148.2 170.3 1B5.9 63.7 BB.& 117.0 128.7 132.6
8 321.3  537.2 661.3 759.9 . 770.1 | 2BO.5  4G4.1 0 535.5  578.0 S64.4
10 | 1545.6 2478.0 3009.3 3234.0 3374.0 [1383.0 2068.5 2349.9 2446.5 2554.0

"a" denotes the number of the external input variahles. "d" denotes the percentage of
input combinarions which are mapped to 1.

# Tha encries of 40% and 50% of l0-variable functlon denote the average of 3 near
minimal solutiens; the other emtrles are the average of 10 minimal solucions.

Definition 2: Let a = (a), az,***, a,) be a constant in B".
A symbol X 2 denotes a mapping X #: B” — B, such that X'?
=0ifX=aand X2=1if X =a. LetS = 8" A symbol X*
denotes the function such that

XS= VY Xx=

a;e 8

Example I: Let X = (x1, x2),2a=(0,1)and b= (1, 0).

1 if X = 1
A= ?fX @ ).and
0 if X = (0,1)
X{a.m_ll ifX=(0,1) orX=(,0)
0 ifxX=(0,00 orX=(l1).

For simplicity, X10.1-(1.0)l is denoted by X101.101,
Lemma I: Letd(X)=nand §,,8>, < B" =L

A’S} % ‘_\/52 _ XS:r\Sg‘

XS1 v xS2= xS1uS2 xS1= x-S X!/ =1, and X¢ = 0.

Let B8 ={X5:8 < B". Thesystem (8,0, 1, v,-,—)isa 2"-
element Boolean algebra.

Example 2: Let X = (x), x2), S = {00, 10}, and S, = {10,
11}

X100,10] . x 110,11} = x110] x100.10} y x110.11} = x100.10,11}
XT00.10 = y111.01} y100.011011} = | and X¢ = 0.

Definition 3: X5 is said to be a literal. A product of distinct
literals is said to be a rerm. A sum of terms is said to be a
sum-of-products expression. The number of terms in a sum-
of-products expression P is denoted by ¢(P). P is said to be
minimal if there is no expression @ such that 1(Q) <i(P) and
that @ denotes the same function as P.

Theorem I: Let (X, X,, -+, X,) be a partition of X. An
arbitrary function f{.X') can be represented in the form

v

la,a2;.8,)
where 2; € B™ and n; = d(X}).
Example 3: 1) Let X1 = (x1), X2 = (x3), X3 = (x3),and X4

fag, as, -
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= (x4) be a (trivial) partition of X = (x, x2, x3, x4). The
function of Table I can be represented as follows:
f(X1, X2, X3, Xa) = XIX0X9XD v X0x9XTx4 v XPX9xixg
v X0xIx0x0 v xfxixdx) v xdxixixl v xixixdx?
v XIxdxix) v xixixdx) v xixixix?d.
2) LetX = (X, X2), X| = (x1, x2), and X, = (x3, x4) be
a partition of X = (xy, X7, X3, x4). The function of Table I can
be represented as follows:

f(/\)1 . \/2) = ){’500) 7 ){a{)ﬂj y X([Oﬂ) 4 [}(%ﬂ!) y X[Iﬂ(l} 3 -’YEID]
y X&Ol) Z ‘.Yi,m)] y /Y(I{H) . ‘Xg[)l} \ )"{10” . inl] 1)
v “!{(l 10y, _X'EU[H Y ‘X/%IO} . X5I 1) v A’S] Ly /‘150]) y ;Y{[] ? B ‘XE]U}.

Theorem 2: Let (X, X5, ---, X,) be a partition of X. An

arbitrary function can be represented in a form

f(/k’l-. /‘/2\ R ‘er')

V

(81,82 .57)

X3 A X ()
where S; = B7, and »; = d(X;). If P is a minimal sum-of-
products expression for f(X), then t(P) < 27—maxitml where
= d(.)(,)

Proof: By Theorem 1 and Lemma 1 we have the first part.
Assume without loss of generality that n; = max; {#;{. f(X) can
be represented as
f‘{A‘Jh X?.) Ea £ Xr)

v

(an,a3, - -a,)

X]S'l 4 fz‘/\'_{"“')(f’, (3)

n
The number of terms in (3) is at most [[ 2% = 277" =
i=2
9 n—max|ng r QI:D
The expression which has the form (2) is called a general-
ized Boolean expression.
Example 4: The expressions of Example 3 can be simplified

as follows:
17, X X, XY = U D s x0 0
v X000 v XIRLXIG v X XaXIRY

v Aoyl wxi el vorl v Xixixlxd (4
2) Gk X3) xR0 OExfOOl
y XIlOD,I]I _XLOI.H]} v Xilm,'lﬂl % XL“U'”E. (5]

1) is a trivial case of generalized Boolean expression and es-
sentially the same as the ordinary one. However, 2) is a non-
trivial case of generalized Boolean function. Note that the
number of terms in (5) is smaller than that of (4).

11I. MULTIPLE-VALUED DECOMPOSITION OF
GENERALIZED BOOLEAN FUNCTIONS

In Section I11-A we introduce multiple-valued decomposi-
tion of generalized Boolean functions. In Section III-B we
obtain the number of terms in a generalized Boolean expression
for various classes of functions.

A. Decomposition Theory

Definition 4: Let (X1, X, , X, ) bea partition of X, and

f(X) be a function such that
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f:B"l X Bn2X---X B — B,
For a, b € B", define a relation [ such that
aibe f(X|X; = a) = f(X|X; = b)

whcref(XIX; =a) denotcsf{X,, P, G E ). SRR b YR
X,). Obviously, the relation i is an equivalence relation. Let
II; = (L, LY, - -, L§,—) be a partition of B% induced by the
equivalence relation i. A function W; : B" — M;; M; = {0, 1,
~oo,ki— 1l}suchthat ¥;(a)=j=ae L} is called a partition
function of B™ where 1 < k; < 27,

Example 5: Consider a six variable function

SX) = (X1 VX2) (x3® x4) (X5 V Xp)
V(xg Vox2) (X3 @ X4) x5V (x) @ x2) " (x5 D Xg).

Let (X1, X2, X3) be a partition of X, where X = (x|, x3), X2
= (x3, x4), and X3 = (x5, xg¢). The function f(X) has the
properties that

AX| X1 = (01)) = f(X]| X, = (10)), f(X]|X> = (00))
= f(X| X = (11)), and f(X| X, = (01)) = f(X| X, = (10)).

Partitions on B™ induced by the equivalence relations i (i =
1,2, 3)are II, = ([00], [01, 10], [11]), 11> = (]0O, 11], [O1,
10]), and II; = ([00], [O01], [10], [11]), respectively. The
partition functions of B" are shown in Table IV.

Lemma 2: Let (X, X5, , X;) be a partition of X, d(X;)
= p;, and let W; be a partition function of B™. There exists a
multiple-valued input two-valued output function g: M; X M,
X -+ X M, — B such that (X, Xa, -, X;) = g(¥,(X)),
‘PQ(XQ), <o, WL (X)), where 1 < |M,| =k; < 2m,

Proof: For each b; € M;, there exists a; such that W¥;(a;)
=b;(i=1,2,---,r).Let g(b1,b2,- -, b,) = flar, a2, ', a,).
It is easy to show that this function satisfies the condition of
the theorem. Q.ED.

This lemma is similar to the well-known decomposition
theorem of Ashenhurst [5]. But, ¥; is, in general, a multi-
ple-valued function. When M; = {0, 1}, (i = 1, 2,- -, r), this
lemma reduces to the ordinary decomposition theorem.

Example 6: Consider the function of Example 5. By Lemma
2 f(X) can be represented as f(X;, Xa, X3) = g(¥;(X)),
\I’z(XQ,), ‘I’3(X3)), where g( Yl, Y, Y},) is shown in Table V.

Definition 5: Let M =1{0,1, -, k—1},t € M,and Y:: M
— B be a function such that Y = 0if ¥ £ rand Y* = 1 if
Y =t Let T = M, YT denotes a function such that Y7 =

V- ¥
te Y
Lemma 3: Let T, T, = M =1,
YT .yT2= YTWTZ, YTy yT2 = }/‘Tsz,
Yhi=Yl-T ¥l =1,and Y¢ = 0.

Let B8 ={YT: T = M}. The system (8,0,1, v,-,—)isa
Boolean algebra.

Lemma 4: A multiple-valued input two-valued output
function g: My X My X -+ X M, — B can be represented in
the form

g(Yls Y),,"',Yr)

=V

(11,02, %80

gt ta, o ) Y- YR Y (6)

TABLE IV
PARTITION FUNCTION
x ¥ (xl) wz(xz) L (XaJ
00 0
01
10
11

19 O
W olw

1
1
0

TABLE V
EXAMPLE 5

Y, ¥, ¥, |

MR RREREREREREREREREOOOOOCC O

HHEEO0O000ORKEHKEKREHOOCOOKHKFRKEROODO O
WRNHOWREDWR RO W EOWE D W O
|

or in a form

fV, Yo Y=V YUYy ()

(T, T2, -0Tr)
where t; € M; T; = M;', and M;‘ = {0, i k;' 5% l}
Proof: By Definition 5 it is easy to show that (6) holds.
By Lemma 3 and (6) we have (7). Q.E.D.
Example 7: The function g of Table V can be represented
in the form

g(Yy, Y2, ¥3) = YIYIYS v YIY3Y] v YIYiY}
v VIFI T yiyeys v iy v Yiviy?
v Yiviyl v Yiviv? v ¥3v3y3 v Yiviy:

or in a form

2(Y1, Y3, Y3) = Yyt
v Yill,ﬁi. Yg Ygz.a} v }/} i ylsl.ii_ (8)

B. Number of Terms

Lemma 5: Let f, ¥;, and g be the functions of Lemma 2. A
literal Y7 of the expression (7) corresponds to the literal b ¢l
of (2), where S; = ¥;'(7;). And a term ¥7'- Y72--- Y] of
(7) corresponds to the term X{re X5 Xorof (2).

Proof: 1t is easy to show by Definitions 4 and 5. Q.E.D.

Example 8: Consider the function f(X) of Example 5 and
the function g(¥) of Example 7. For the term Y{*!- y}. yi0:1.2
of g(Y), the corresponding term of f(X) is X{P0011%. xPL.10}.
X1000L10 Eor the term Y2 ¥9- Y3, the corresponding term
of f(X) is

Xllol.](],l 1} . X{?.UU‘] 1}, XEID'I ll‘
And for the term Y1 Y3, the corresponding term of f(X) is
XIOLI10H, xi01.10]

Theorem 3: Let (X, X2, *+, X,) be a partition of X. Sup-
pose that f and g satisfy the relation
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JXq, X5, -, X)) = g(W(Xy), W X3), <+, W X,)).

If Py and Q, are minimal sum-of-products expressions
for f and g, respectively, then ((Py) = 1(Q)) < (f[ k,-}/
i=1

(mf“x fksi), where W Bji — My M; ={0,1,--- , ki — 1},

= d(X,-),and == |M,| =k; < 2
Proof: 1) For Py, a minimal sum-of-products expression
of f(X)

SX1, Xay o0, X)) v X5 x5 xS

(S1.520.50)

consider the expression P,, which has the form

Vv

(G1.G2 *Gy)
Clearly, t(Py) = t(P,). It is easy to show that P, represents
g(Y). For ), a minimal sum-of-products expression of
g(Y)

YS.yg2... yGr, where G; = ¥;(S;).

Y;) v

(71,72, -+ T¥)

g{Yi, YZ'J”" Y|r| Y_;‘H-l... Y:’

consider the expression @5, which has the form

XPr-x--- X0, where D; = ¥7\(T)).

(D102 -Dr)

Clearly, t(Q)) = t(Q2). By Lemma 5, Q> represents f(X).
As Pj1s a minimal expression of f(.X), we have t(P) =< {(02).
As () is a minimal expression of g(Y), we have 1(Q1) < 1(P>).
Therefore, t(Py) = t(Q1).

2) Assume without loss of generality that max{k;] = k.

g(¥) can be represented in the form

Yr) lel i Y;’f i y;s A Yir

Jtr)

gY1, Yo, o, v ©

(22,
where Ty = Myandt; € My (i =2,3,---,r). The number of
terms in (9) is at most

fa () )

Example 9: The expression (8) of Example 4 is a minimal
sum-of-products expression for g(¥). Therefore, the corre-
sponding minimal expression for f(X) is given by

Q.ED.

f(leXL X.‘S) - XilDU.G].]UI _XEUI,IULXIJ()O,UI,IU}
v XL oot ylioan xlpL10l. ytoii0]
Theorem 4: Let (X1, X2, -+, X,) be a partition of X. Sup-
pose that f can be represented in a form (X, Xo, - -+, X;) =
g(¥1(Xy), ¥a(X3), - - -, ¥, (X)), where ¥;: B™ — M;; M;
={0,1,--,k; — 1}; 1 < k; = |M;| < 2% is a partition func-
tion. There exists a function (X, X», - - -, X;) whose minimal

sum-of-products expression contains {IrI k,-)/(max {k,-]}
i=1 i

terms.
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Proof: Assume without loss of generality that max {k;}
= k. Let g(¥) be
g(}/]! YZ: T L YI‘)
1

b

g(Y) can be written as

ifY|+Y2+---+Y,=0(rnodk;)
otherwise

g(Y11 YZs-..s}/J') V

fitiat 1=

(mod#k;)
e 0,1, ki =

Yil . Yél... Y!’r
0

1),

Every expression for g(¥) has the form (10) because if the
expression has a term of the form

Y?"Yiz“'Y?q""Yi’,

(10)

| 8] =2

then it cannot satisfy the condition for g(¥). Therefore, the
minimal expression which represents g(¥) has the form (10).
For arbitrary ¢, t3,-** . f,, thereexists 1, € {0, 1,- -+, k; — 1}
such that ty + ¢, + -+ ¢ =0 (mod k). So the number of the

terms of (10) is Irl k;. By Theorem 3 the number of the terms
i=2

of f'is also ﬁ k.

i=2

Q.E.D.

Theorem 5. Let (X, X»,- -+, X,) be a partition of X, d(X;)
= g, and gr = n. The necessary and sufficient number of terms
to represent an arbitrary function f(X,, X5, ---, X,) is
244,

Proof—Sufficiency: By Theorem 2 the minimal sum-
of-products expression for f contains at most 27~9 terms.
Necessity: Let the function f(.X) be decomposed as

SX1, X, X)) = g(W1(X), Ya(Xa), -, Y, (X))

where
Vi) = 3 %204, X = (i i )

and let W, denote a partition function W;: B¢ — M; M = {0,

1,--+,29 — 1}. By Theorem 4 there exists a function whose

minimal sum-of-products expression contains (29) ! terms.

Q.E.D.

Example 10: Consider the function f in Table V1. Let X,

= (xy, x2) and X, = (x3, x4). f] can be decomposed as /1 (X,

X7) = gi(¥1(Xy), ¥a(X3)), where ¥;(00) = 0, ¥;(01) =1,
W (10) =2, ¥(11)=3,(i=1,2),and

1 Y +Y,=0(mod4
e, ¥2) = [0 otLerwize. : .
The minimal sum-of-products expression for g,(Y, ¥5) is
gV, Y),=Y-v3vyl-yivyt-vyivri v,
and the corresponding expression for f(X, X,) is

Sy, X = X X000 Ty gt ony e
v X‘IO) .X&l@) v XEII) _th}],].
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TABLE VI
7

L]

i
-+,

c»‘h

1

(-
&l
ba

I e e e e I e s o o o o B N T

el E == R e = = = O = I
Hi= SO OSHHRDIOR RO S B
HFOMOMORoOFROROSHOS ROl B
COoOFQOQOFQOOHOCOOOOM
o+-HHOoOrFoOoOoOHrOoOoCOoOLooOH
HFoOoOROoORFOORFRFOROOR

Therefore, the minimal sum-of-products expression for f)
contains 2779 = 4 terms. This is an example of a function of
Theorem 5, wherer = g = 2.

Definition 6. Let (X, X2, -+, X,) be a partition of X. f(X)
is said to be partially symmetric with respect to X; if f(X) is
invariant under any permutation of variables in {X;}.

Theorem 6: Let (X}, X3,- -+, X,) be a partition of X, 4(.X;)
= g and gr = n. Let f(X) be partially symmetric with respect
to X; foralli(f = 1,2, -+, r). The necessary and sufficient
number of terms to represent fis (g + 1)77 1.

Proof—Sufficiency: By the property of the partially
symmetric function, f(X) can be decomposed as
Ty Kgyonn i) = OE (&1 )y
Wa(X7), oo+, (X)) (11)
where W;(X;) = |X;| (0 < |X;] =g, |X;| denotes the number
of 1’sin X;). By Theorem 3 the minimal sum-of-products ex-
pression for f contains at most (g + 1)7~! terms.

Necessity: By Theorem 4 there exists a function whose

minimal sum-of products expression contains (g + 1)~ ! terms.
Q.E.D.

Example Il: Consider the function f5 in Table VI. Let X
= (xy, x2) and X7 = (x3, x4). f> is partially symmetric with
respect to X;, and it can be decomposed as

S2(X1, X3) = g2(¥ (X)), ¥a(X2)),
where ¥:(00) = 0, ¥,(01) = ¥;(10) = 1,
V(11)=2,(/=1,2)and

vy o[l Y Y2=0(mod 3
g1, ¥2) = 0 otherwise.

The minimal sum-of-products expression for f3 is
gV, Y=Y -Yiv ¥|-Yiv Yi-Y]
and the corresponding expression for f5 is
fa(X|,.-Ya) _:X(lm)_/‘:guu; v XH'”'”"'XU” y XE“)‘/\'EOL“H.

Therefore, the minimal sum-of-products expression for f5
contains (g + 1)"~! = 3 terms. This is an example of a function
of Theorem 6, where g = r = 2.

Theorem 7: Let (X1, Xa, -, X,) be a partition of X, and
d(X;) = g. Let f(X) be a parity function of n variables. The
number of terms in the minimal sum-of-products expression
for fis 2771

Proof: By the property of a parity function, f(X) can be
decomposed as (X1, X2, -, X;) = g(¥1(X1), ¥a(X2), - -,
¥, (X,)), where
1 if | X;] =1 (mod 2)

0 if | X;| = 0 (mod 2).
By Theorem 3 the minimal sum-of-products expression of /
contains at most 2771 terms. Clearly, W;: B — {0, 1}is a
partition function. By Theorem 4 we need 277! terms to rep-
resent f. Q.E.D.
Example 12: Consider the function f3 in Table V1. Let X
= (xy, x>5) and X5 = (x3, x4). f3 is parity function and it can
be decomposed as f3(X 1, X2) = g3(W (X)), ¥2(X2)), where
W, (00) = ¥, (11) = 0, ¥;(01) = W;(10) = 1, and
e 1 if Y, 4 Y,=0(mod?2)
g (Y1, ¥y) = .
0 if ¥1+ Y, =1 (mod 2).
The minimal sum-of-products expression for g3( ¥y, ¥5) 1s

g3(¥Y,Y)=Y-Y)vy Y] Y]

¥ (X;) =

and the corresponding expression for f(.X, X3) is
f3(Xls X,y) = )(i]ﬂﬂ,ll‘. . xoo.n Xilm,im ; X{{H_IOE_

Therefore, the minimal sum-of-products expression for f3
contains 27~! = 2 terms. This is an example of a function of
Theorem 7, where g = r = 2.

IV. COMPLEXITY OF PROGRAMMABLE LOGIC ARRAYS
WITH DECODERS

In Section IV-A we show that a PLA with decoders realizes
a generalized Boolean function. In Section [V-B we obtain the
sizes of PLA’s for various classes of functions.

A. Realization of Functions Using PLA’s with Decoders

Definition 7: Let a = (a,, az, "+, a,) be a constant in B”".
X % is said to be a maxterm of X.

By Definition 2 we have the following.

Lemma 6: XS can be represented by the product of some
maxterms of X

XS= A X%
aie (B"—5)

Theorem 8: Let (X1, X»,---, X,) be a partition of X. In a
PLA with decoders, if each decoder generates all the maxterms
of X; fori= 1,2, -+, r, thenan arbitrary term which has the
form X751+ X352 --- X5 can be realized in each column of the
AND array. The width W of the AND array to realize the given
function fis equal to the number of terms in a minimal sum-
of-products expression for fand W < 2n—maxiui,

Example 13—a) In the Case of the Two-Level PLA: Let
X = (x)). X2 = (x3), X3 = (x3),and X4 = (x4) be a (trivial)
partition of X' = (x, x2, x3, x4). Fig. 2 shows the two-level
PLA for the function of Table I. Each column of the AND
array corresponds to each term of (4).

b) In the Case of the PLA with Two-Bit Decoders: Let X
= (,Y; 5 ,}(’2), X =(x,, XE), and Xy= ()C_q., X4) bea partition of
X = (xy, X2, X3, x4). Fig. 4 shows the PLA with two-bit de-
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coders for the function of Table [. Each column of the AND
array corresponds to each term of (5). (End of the ex-
ample.)

By Theorem 8, to minimize the size of the AND array for
f(X), it is sufficient to obtain a minimal sum-of-products ex-
pression of f(X) having the form (2). In the case of a two-level
PLA, the expression denotes the function f: {0, 1}* — {0, 1},
whereas in the case of 2 PLA with two-bit decoders, the ex-
pression denotes the two-valued function of four-valued vari-
ables f: {00, 01, 10, 11}*/2 — {0, 1}.

Theorem 9: Let W, and W, be the width of the two-level
PLA and the PLA with two-bit decoders to realize a function,
respectively. Then W < W),

B. Formulas for PLA’s with Decoders

Theorem 10: In a PLA with ¢-bit decoders the following size
is necessary and sufficient to realize an n-variable function,
when the assignment of the input variables is fixed to the de-
coders where n = gr.

1) For an Arbitrary Function: (r- 29+ 1) - 2774,

2) For an Arbitrary Symmetric Function: (r-29+ 1) (g
+ 1)L

3) For a Parity Function: (r-29+1)-27"1

Proof: By Theorems 5-7. Q.E.D.

Corollary 1: In a PLA with two-bit decoders the following
size is necessary and sufficient to realize an n-variable function,
when the assignment of the input variables is fixed to the de-
coders (n = 2r).

1) For an Arbitrary Function: 3(n + %) - 2"

2) For an Arbitrary Symmetric Function: 3(n + H/37

3) Fora Parity Function: (n + H/2".

Corollary 2: The size of two-level PLA to realize a parity
function of n variable is (n + 3)27.

C. Assignment Problem of the Input Variables to the
Decoders

In the case of the PLA with decoders the way of assignment
of the input variables to the decoders often influences the size
of the PLA.

Example 14: Let us realize the function of Table I by using
a PLA with two-bit decoders. Assume that X = (X, X3)isa
partition of the input variables X. There exist three possible
ways of assignment of four input variables to two two-bit de-
coders.

1) When the input variables are assigned as X; = (x,, x2)
and X5 = (x3, x4). (See Fig. 4.) The minimal sum-of-products
expression is
(X1, X) = /\:[!(1[1,011 ] Xgm,nu

v Xglon_ns . X@l'm‘ v XI]UI,HH 5 XL:’O" .

So three columns are necessary in this assignment.

2) When the input variables are assigned as X = (x, x3)
and X5 = (x5, x4). (See Fig. 7.) The minimal sum-of-products
expression is

jl(/Yl-s Ag} = ‘Y{{J(],(}I,IUI ; ‘){{?0.1 1 v ,WPO'HE 3 )ﬁi}l.!(]l‘

So two columns are necessary in this assignment.
3) When the input variables are assigned as X = (x, x4)
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- r 1. @ denotes AND
1 = : % denotes OR
X f !
! 1 :
T3 — } —
| I
s T H :
X i f
2 2 i —
Ty =] } 1
L+ d
| T )
— Eil
Ll

Fig. 7. PLA with two-bit decoders for Table L.

T T-' -! @ denotes AND
1 — T ; = denotes OR
I
I T
1 1 :
i [ f
« T
T T
X 2
2 | {
1 1
x 1 T ]
3
Ll Loy
| e g e
> f
L1 A

Fig. 8. PLA with two-bit decoders for Table 1.

and X5 = (x5, x3). (See Fig. 8.) The minimal sum-of-products
expression is
f(X]-,XZ) = X{]U(],]l}_XI;DI,IOE V XHU].IU}

- X0y x00011, x400,10,

So three columns are necessary in this assignment.

Therefore, when the input variables are assigned as shown
in Fig. 7, the array is the minimum.

Example 15: Consider the function f7 in Table VI. When
the input variables are assigned as X = (x;, x3) and X3 = (x2,
x4), f1(X, X7) can be written as

Si(Xn, Xa) = X0 - X0 v x{00 - x4

v X(lll)_Xg[]O'l y Xﬁm]‘Xg”)

= X001 x(0)  xi0n10}. x(I),
Therefore, the function f; requires only two terms in this as-
signment.

D. Statistical Results

Average Size of PLA’s with Two-Bit Decoders. Table 111
shows the average size of PLAs for up to 10-variable functions.
d = (u/2") X 100 denotes the percentage of minterms which
are mapped to one.

The Effect of the Assignment of Input Variables to the
Decoders: To investigate the dependence on the way of as-
signment of input variables, ten functions of 8 variables were
randomly generated for each density. Then 105 expressions
which correspond to all possible ways of assignments were
minimized. Table VII shows the statistical result of this ex-
haustive investigation.
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TABLE VIII
AVERAGE NUMBER OF COLUMNS OF PLA’S FOR n-INPUT 4-OUTPUT
FUNCTIONS
—| Two=-level TLA PLA with two-bhit decoders
o density density
" 12.5% 25.0% 37.5% 50, 0% 12.5% 25.0% 3T 5% 50.0%
) 6.2 9.2 10.8 12.0 5.8 7.8 9.4 10.6
6 | 21.6 35.2 42.0 41.8 19.4 31.2 4.2 1.6
B B6.4 123.0 140.0 150.6 16.4 107.6 118.56 12350
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TABLE VII
AVERAGE NUMBER OF COLUMNS OF PLA’S FOR EIGHT-VARIABLE
FUNCTIONS
density: d (Z)
Type of PLA sz |10 |1sz | 2oz | zox | o
PLA's with Aaslpnent Lsl g4 | 26,7 19,9 | 2002 | 26 30.2
two-bic Sptlm: B
decoders | :Zf‘fgg“t‘ﬂ:lﬁs 10.10| 17.27| 22.71| 27.80| 31 33.58 |
Two-level PLA's 10.8 | 19.2 | 26.5 31.1 39.5 | 44.4

Each entry is the average of 10 randomly generated functions.
* The average of 105 assignments.

Multiple-Output Function: In the case of m-output func-
tion
Sj i BRI X BB X oo X Bl =+ B G=01,---m=—1)

the number of columns of the AND array is equal to the num-
ber of the terms of the expression for the function
"‘XB"’XM""B,

where M = {0, 1, -, m — 1.

F:Bm X B2 X

Table VIII shows the average number of columns of the
AND arrays for n-input 4-output functions, where d = u/
(27-m)and u = |F~I(1)].

V. COMPLEXITY OF THREE-LEVEL PROGRAMMABLE
LOGIC ARRAYS

In this section, first we show that a three-level PLA realizes
a generalized Boolean function. Then we obtain the sizes of
PLA’s for various classes of functions.

Lemma 7: Let (X1, X3, -+, X;) be a partition of X. In a
three-level PLA, if the D array generates all the maxterms of
X; for every i (i = 1, 2,+--, r), then an arbitrary function
which has a form X7'- X32--- X3 can be generated in each
column of the AND array. The width W of the AND array to
realize the given function fis equal to the number of terms in
a minimal sum-of-products expression for f, and W =<
2n—maxng|

By Lemma 7 we have the following.

Theorem I1: Let (X, X3,---, X;) be a partition of X and
the D array generate all the maxterms of X; for every i. The
size of three-level PLA which is sufficient to realize an arbi-
trary n-variable function is given by the following formula:

Cn)=02n+ W)H+ W (12)

where

z
W = 2r—maxind H = 3" 27 and n; = d(X;).
i=1
Definition 8: Let (X1, X3, *++, X,) be a partition of X. A
vector m = (ny, ny,- - -, 1,) 18 said to be a partition vector of the
input variables, where n; = d(X;).
n

letm= (Ig S0 o P I), where denotes the largest

: .. M .
integer not exceeding E we have the following.

+ Average of 5 randomly gencrated functions.

TABLE IX
S1ZES OF THREE-LEVEL PLA’S WHICH ARE SUFFICIENT TO REALIZE
VARIOUS CLASSES OF FUNCTIONS OF n-VARIABLES

Arbitrary function ?::i::::y SymasLLic Parity function

FPartition Size | Partition Size Parcition Size
n n C(n) n C(n) n C(n)
[ (3,2,1) 288 (3,2,1) 258 (2,2,2) 166
g (4,2,2) 784 (3,3,2) 572 (2,2,2,2) 392
10 (5,2,2,1) 2216 (4,3,3) 1168 (3,3,2,2) 680 |
12 (6,2,2,2) 6752 (4,4,4) 23717 (3,3,3,3) 1032
14 7,2,2,2,1) 22280 (5,5,4) 4670 (3,3,3,3,2) 1600
16 (8,2,2,2,2) l 78592 (6,5,5) 8740 (&,3,3,3,3]12320J

Theorem 12: The size of three-level PLLA which is sufficient
to realize an arbitrary function of n-variable is given by the
following formulas:

254 (3n+ 1)4/27 + 2n2,

274 (20 4 2)\/ 2 4 2n(n + 1),

By Theorem 3 we have the following.

Theorem 13: Let (X, X»,---.X,) bea partition of X, and
fUX) be partially symmetric with respect to X; foralli (i = 1,
2, -+, r). The size of three-level PLA which is sufficient to
realize f(X) is given by

Cn)=2n+ WH+ W

when n is even.
when n is odd.

where
W=l (m+ ]}/(max{n,—+ 1}]._
i=1 f
H= i 2% and n = (ny, na, - -, ny)
=1

is a partition vector.

By Theorem 7 we have the following.

Theorem [4: The size of three-level PLA which is sufficient
to realize an n-variable parity function is given by

Cn)=Qn+ WH+ W (14)

where

3
W=2r-land H= Y 2n,
i=1
Table IX shows the value of C(n) calculated from the formulas
(12)-(14) and corresponding partition vector n, where n is
chosen to minimize the value of C(n).

VI. CONCLUSIONS

1) Generalized Boolean functions can be directly realized
by PLA’s with decoders or three-level PLA’s.

2) In a PLA with two-bit decoders, the following size is
necessary and sufficient to realize an n-variable function when
the assignment of the input variables to the decoders is fixed:
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for an arbitrary function, 4(n + 3)27; for an arbitrary sym-
metric function, 3(n + $)+/3%; for a parity function, (n +
V2.

3) A PLA with two-bit decoders requires a smaller array
than a two-level PLA. In the case of n = 10 and d = 50 percent
the former is, on the average, 24 percent smaller than the
latter.

4) The size of the arrays of PLA’s with two-bit decoders
can be reduced by optimizing the assignment of the input
variables. In the case of n = 8 and 4 = 40 percent optimally
assigned PLA’s are 10 percent smaller than nonoptimally as-
signed ones.

3) For a three-level PLA, the following size is sufficient to
realize an n-variable function (n = 2r): 27+ (3n+ 1)/2"+
2n2,
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