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Correspondence

Conservative Logic Elements and Their Universality

TSUTOMU SASAO AND KOZO KINOSHITA

Abstract-A conservative logic element (CLE) is a multiple-
output logic element whose weight ofan input vector is equal to that
of the corresponding output vector, and fan-out of each output
terminal is restricted to one. A CLE is a generalized model of
magnetic bubble logic elements, etc. In order to realize an arbitrary
function, it is necessary to use constant-supplying elements (CSE's).
In this correspondence, we consider the universality of CLE's in
relation to the number of CSE's.

Fig. 1. Constant-supplying elements.
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Index Terms-Logic circuits, logic elements, magnetic bubble
logic elements, universality of logic elements.

I. INTRODUCTION
A conservative logic elements (CLE) is an n-input m-output logic

element whose weight of an input vector is equal to that of the
corresponding output vector [1]-[5]. CLE's are generalized
models of magnetic bubble logic elements, fluid logic elements,
transfer relays, current-mode logic elements without power

sources, and so on. It is assumed that fan-out of each output
terminal of a CLE is one. In order to realize an arbitrary function,
Cl's and C0's are used as circuit elements besides CLE's. A C1
always supplies a constant "1" and a C0 always supplies a con-

stant "0." Both a C1 and a C0 are called constant-supplying ele-
ments (CSE's) (Fig. 1). It is also assumed that fan-out of each CSE
is one.

For example, consider the three-input three-output element T
shown in Fig. 2. Clearly, this element is a CLE. Suppose that it is
desired to realize the function h(xl, x2, X3) = XI X2 X3 by using T
elements. To realize h, at least one C, is necessary because every

output function of T satisfies the conditionfi(0, 0, 0) = 0 while h(0,
0, 0) = 1. Similarly, to realize h, at least one C0 is necessary be-
cause every output function of T satisfies the condition A(1, 1,
1) = 1 while h(l, 1, 1) = 0. On the other hand, it is clear that one

C1 and two C0's are sufficient to realize the function as shown in
Fig. 3. Then, how many CSE's are necessary and sufficient to
realize h by using T elements? More generally, how many CSE's
are necessary and sufficient to realize an arbitrary function by
using CLE's? The purpose of this correspondence is to obtain the
necessary and sufficient conditions of CLE's for the realizability of
an arbitrary function in relation to the number of CSE's.
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Fig. 2. T element.

II. DEFINITIONS AND BASIC PROPERTIES OF

CONSERVATIVE LOGIC ELEMENTS
In this section, some definitions and basic properties of CLE's

are described. These results will be used in Sections III and IV.
The weight of a vector a = (a,, a2, , an) is defined as

a En= 1 ai.
Definition 2.1: An n-input m-output logic element is said to be a

conservative logic element (CLE) if it satisfies the following
conditions.

1) For any input vector a e BE, lall = JIF(a)JI holds where
B = {0, 1) and F(a) = (f,(a), f2(a), j**,fm(a)) is the output
vector.

2) Delays of each output can be neglected.
Definition 2.2: A circuit satisfies the following conditions (see

Fig. 3).
1) It consists of a finite number of components as follows.

a) Circuit elements (CLE, Cl, and C0).
b) External input terminals (as many as the number of input

variables).
c) External output terminals.

2) Any receiver' is connected to one sender,' and any sender is
connected to one receiver, i.e., the fan-out of each output
terminal is one.

3) It has no feedback loops.
Particularly if the circuit has only CLE's as its circuit elements,

then the circuit is said to be a conservative logic circuit (CLC).
It is clear that the following lemma holds.

lEither an input terminal of a CLE or an external output terminal of the circuit is
said to be a receiver. Either an output terminal of a circuit element or an external
input terminal of the circuit is said to be a sender.
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Lemma 2.1: In a CLC, for any external input vector, the weight
of an external input vector is equal to that of the corresponding
external output vector.
So if the inputs of a CLC are all "0," then the outputs are all "0."
Corollary 2.1: The functionfsuch thatf (0, 0, , 0) = 1 cannot

be realized without Cl.
Definition 2.3: If an n-input m-output CLE (n 2 2) satisfies the

following conditions, then the CLE is called an n-m element.
1) Every input variable is contained as a proper variable in at

least two output functions of the CLE.
2) No output function of the CLE is a constant "0."
By this definition, it follows that an n-m element is a CLE

without redundant input/output.
Lemma 2.2: For an n-m element, 2 < n < m < n * 2n
Lemma 23: Only four kinds of 2-m elements exist as shown in

Fig. 4. The four elements shown in Fig. 4 are called 'A, IB, IIA, and
IIB elements.2
A function f is said to be linear iff can be written in a form

f(X)= aof3)a,x, ®a2x2t . a,xX.
A function f is nonlinear iff is not linear.
Lemma 2.4: There are at least two nonlinear functions in the

outputs of an n-m element.
A function f is said to be monotone increasing iff (a) .f (b) for

any a and b such that a . b. A functionfis nonmonotone increasing
iff is not monotone increasing.
Lemma 2.5: There is at least one nonmonotone increasing func-

tion in the outputs of an n-m element if n < m.
Lemma 2.6: If there is a nonmonotone increasing function in

the outputs of an n-m element, then both a variable and its com-
plement can be realized by using (n - 1) CSE's.
Lemma 2.7: If there is a nonmonotone increasing function in

the outputs of an n-m element, then the functionf (x1, x2) = lx2
can be realized by using at most (3n - 4) CSE's.
Lemma 2.8: Let the output lines of a circuit be l, 12, , l

which generate the output functionsf2,f -. , fin, respectively. By
connecting IA elements to these lines, N1 "I.'.s and No "O'..s can be
generated where

N = min |IF(a)|I, No = m - max IIF(a)II,
aeBn aeBn

and

F(a) = (fi(a), f2(a), . (a)).

Fig. 4. All the 2-m elements.
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Lemma 2.9: If n < m, then any number of constant "0"'s can be
realized by using nCl's and some n-m elements.

III. UNIVERSALITY OF n-m ELEMENTS

Definition 3.1: Let {A1, A2, -, A,} and {B1, B2, .., Bj} be two
sets of elements and {kl, k2, , k,} be a set of integers. A set {A1,
A2, * -, A,} is said to be universal with klB1's, k2B2's, -, k,B,'s if
an arbitrary function can be realized with k1Bj's, k2B2's, , and
k,B,'s and an arbitrary number of Ajs ( = 1, 2, , r).
An n-2n element shown in Fig. 5 is called an En element.
Lemma 3.1: {En} is universal with (2n - 2) Cl's.
Definition 3.2: Let an n1 - ml element A1 have outputs f¶l),

f f,* ), and let an n2 -m2 element A2 have outputs f(,
.., f(2 (n1 . n2, ml . M2). When we can represent the

output functions as

fl'(a, X) = f(2)(X) (i= 1, 2, ", M2)

f(')(a, x) = constant (j= m2 + 1, M,i)

by renaming the number of the input variables and output func-
tions of A1 properly, it is said that A1 can be used as A2 where
a = (a,, a2, ,a-n,2) is a constant vector and x = (xIx2, ,
Xn2).
Lemma 3.2: If there is a function fS such that f5(ei) f,(ej) =

l(i * j) in the output of an n-m element, then this element can be
used either as an IA element or an IIA element by using
(n - 2)C1's.

Corollary 3.1: If an n-m element cannot be used as neither an IA
element nor an "IA element, then by renaming the number of the
output functions properly, the output functions can be written as
follows:

2 In the case of magnetic bubble logic elements, only one bubble changes its path
in the class I element, while both bubbles change their paths in the class II element
[5].

fi(ej)= ° if i=j (i= 1, 2, - -, n).
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Fig. 6. A circuit which can be used as an JH element.

So if an element cannot be used as neither an IA nor an IIA
element, then by Corollary 3.1, we can assume the input/output
relations without loss of generality as follows. For the input
O= (0, 0, , 0), the output is F(O) = (0, 0, , 0), and for the
input ei = O,O -, O, 1j, 0, , 0), the output is F(ei) = (0, 0, ,

01ij,°.* * *0 0°m). In other words, for 11x < 1, input vector x
is equal to the first n-component vector of the corresponding
output vector F(x).
Lemma 3.3: For 1 < IIx 11 < k, suppose that the input vector x of

an n-m element is equal to the first n-component vector of the
corresponding output vector F(x). And for an input vector such
that Ila|| = k + 1, let the first n-component vector of F(a) be b. If
Ila 611 = 1, then this element can be used as an IB element, and if
IIa bDI = s . 2, then it can be used as an Es element.
Example 3.1: Consider the 5-10 element whose output func-

tions are fi = x1T4, f2 = X2 T4h, 3 = X3 T5, f4 = X4 T5,
f5= X5 TS f6=f9=fjo= Ts and f7=f8= T4 where
T4= xlx2x3x4 and T5= x1x2x3x4x5. Let the input vector be
X = (X1, X2, X3, X4, X5). When llxll < 3, the input vector is equal to
the first five-component vector of the corresponding output vector
(f1(x),f2(x)jf3(x)f4(x)jf5(x)). But for the input vector a = (1, 1, 1,
1, 0), the first five-component vector is b = (0, 0, 1, 1, 0) and
|a - 2. So this element can be used as an E2 element. By
assigning X3 = X4= 1 and x: = 0, the output function becomes
fl =x1TT f2= X T2 f 3=f 4= 1, f 5=f 6=f9=f 10=0, and
f7 =f8=2 where T2 = x1 x2.
Lemma 3.4: An n-m element can be used as either an IB or an Ek

element (2 < k < n) or it has the function f5 such that f5(e1) =
f8(ej) = 1(i 7 j) in its outputs.
Lemma 3.5: If an n-m element A has a function f, such that

f5(ei) = f,(ej) = 1 (i ]j) and a nonmonotone increasing function in
its outputs, then {A, CO} is universal with (3n - 2)Cl's.

Theorem 3.1: For an n-m element A, {A} is universal with
(3n - 2)C1's if n < m. For an n-m element B, {B, CO} is universal
with (3n - 2)Cl's if and only if B contains at least one nonmono-
tone increasing function in its outputs.
Example 3.2: Let us verify the universality of the 3-4 element A

shown in Fig. 6(a) where f= (X1 V X2 V X3)(il V X2 V X3),
f2 = X1 X2 V X2 X3 V X3 xi, and f3 =f4 = Xl X2 X3. As n < m, there
is a nonmonotone increasing function fi in its outputs. We can
construct the circuit which produces f=x1 2 according to
Lemma 2.7. The complement of a variable can be obtained as Fig.
6(c). The circuit which is inside the broken line of Fig. 6(d) pro-

x

Y, YI x v y2x

Y2 Y2yx v ylx

x

Fig. 7. P element.

duces the functionf= xl x2. Becausefi (1, 0, 0) =f(O, 1, o) = fi(1,
1, 0) = 1, this element can be used as an IA element as shown in
Fig. 6(b). Connecting this IA element to the circuit shown in Fig.
6(d), we can reproduce a "1." This circuit can be used as an 'B
element. A constant "O" can be generated as Fig. 6(f). Hence, {A}
is universal with four Cl's. (See [5].)

IV. UNIVERSALITY OF n-n ELEMENT
In this section, we consider the universality of an n-n element.

The results of this section are useful for the system in which the
number of not only Cl's, but also Co's is important.
Lemma 4.1: For any n-n element A, {A} is not universal without

a CO.
By Lemma 2.3 and Theorem 3.1, a 2-2 element is not universal.

First, we will show the universality of the 3-3 element shown in
Fig. 7, which is called a P element. To show the universality of the
P element, we use the theory of multirail cascade [7].
A group function is defined as a mapping from Bm into a finite

group. When m = 1, it is called an elementary group function. A
group function F: BN -- H is said to be decomposable over a
group G if it can be expressed as a composition of elementary
gro,up functions Xi: B -> G(G O H). This composition corresponds
to a cascade connection of circuits realizing the elementary group
function Xi. The overall cascades realize the group function F. It is
known that the cyclic group Z. of odd degree is decomposable [7].
The following lemma is a special case of n = 3.
Lemma 4.2: Let Z3 = {I, a, a2} be a cyclic group of degree 3.

F(X): BN -. Z3 is decomposable as follows:

F(X) = gX. - F1(X\m) - gXm - F2(X\m)
where F,(X\m) and F2(X\m) denote group functions which do not
contain x. as a variable, g E {S3 - Z3}, and S3 is the symmetric
group of degree 3.

It should be noted that for any a E Z3, g - a' * g = a-'.
By using this lemma, we can show that the P element is univer-
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Fig. 11. Realization of logic function f(X).

sal. When x = 0, the P element propagates two signals y, and Y2
straight, while when x = 1, it interchanges the signals y, and Y2.
Let each element of Z3 = {I, a, a2} correspond to the circuit of Fig.
8. By using two P elements, we can realize a circuit which corre-

sponds to the elementary group function a' or a2x as shown in
Fig. 9. Similarly, if g E {S3 - Z3} corresponds to the circuit of Fig.
10(a), then gx can be realized as shown in Fig. 10(b). Therefore, by
Lemma 4.2, any group function F: BN -+ Z3 can be realized by an

appropriate cascade connection of the circuits shown in Figs. 8-
10. Next, we realize a logic function f(X): BN -. B by using the

circuit which realizes the group function F(X): BN Z3. By con-

necting CSE's to the circuit which realizes F(X) = af(X) as shown
in Fig. 11, we can obtain a circuit which realizes three logic func-
tions f(X), f(X), and "0." In this way, any logic function can be
realized by using two C0's, one C1, and some P elements.
Lemma 4.3: {P} is universal with two CO's and one C1.
By using Lemma 4.3 and the results of Sections II and III, we

obtain the following results.
Lemma 4.4: If there is at least one nonmonotone increasing

function in the outputs of an n-n element A, then {A, IA} is univer-
sal with (s + 2) C0's and (n - s)C1's where s is an integer such that
1 < sa< (n - 2).
Lemma 4.5: If an n-n element A can be used as an IA element or

an I1A element and contains at least one nonmonotone increasing
function in its outputs, then A is universal with (r + 3)Co's and
(2n - r - 2)Cl's where r is an integer such that 1 < r < 2(n - 2).

Theorem 4.1: For an n-n element A,
1) {A} is universal with n CSE's if A can be used as a P element
2) {A} is universal with (2n + 1) CSE's ifA can be used as an IA

or an "IA element and has a nonmonotone increasing func-
tion in its outputs

3) {A IA} is universal with (n + 2) CSE's if and only if A has a

nonmonotone increasing function in its outputs.
Corollary 4.1: For an n-n element A, {A} is universal with

(2n + 1) CSE's if A has a nonmonotone increasing function and a

function such that

ft(ei) = f(ej)=1 (itj)

Example 4.1: Let us consider the universality of the T element
shown in Fig. 2. By setting x = 1, the T element can be used as an

IA element. T has a nonmonotone increasing function f2 in its
outputs. So {T} is universal with seven CSE's by Theorem 4.1.
(End of the Example.)
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Fig. 12. A circuit which can be used as a P element.

Fig. 12 denotes a circuit which can be used as a P element.
Thus, we obtain the following result.
Lemma 4.6: {T} is universal with three C0's and one C1.
This result can be applied to the model of magnetic bubble logic

studied by Graham [1], and Friedman and Menon [2]. Since the T
element corresponds to the conditional transfer [2], Lemma 4.6
can be restated by the following.

Corollary 4.2: An arbitrary function can be computed by a pro-
gram which consists of a sequence of instructions of the form
e = (x1, X2, X3) such that Xe = (X -{X2}) U {X3} if xI, x2 X

and X3 X, and xe = X otherwise.
This result is useful for conductor-access magnetic bubble logic

elements. An arbitrary logic function can be computed by a pro-
gram consisting of a sequence of instructions which conserve the
number of magnetic bubbles. It should be noted that only four
working storages, which correspond to CSE's, are required for the
computation in this system.
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