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||Yk +1 12 .| 112 and, consequently, the convergence of the norm
sequence.
Lemma 2: Let Assumptions 1 and 2 hold, and let Yi E S(ai,

am) in (4). Then the vector sequence {Yk}Ik' 1 converges to the zero
vector.

Proof: Since Y1 E Y'(a1 , am), it is evident by induction
that each Yk E f(al, .-, am). Since the sequence {Yk} by Lemma 1
is defined in a compact set, it has a cluster point u E .(ai,
am); furthermore, Ily, 11 > Ilull for each k. Choose g > 0, and con-
sider the set 1g = {x E X lix - ull < lixii > uli}. Choose an
index p such that yp E W. Then yp,+1-u= yp-u-
cp[uTa,p + (yp - u)Taijap; if uTai, = 0, then it is easy to show that
IYP+ 1-U| < YyP- u||, and thus yp+ 1 E4g, too. By induction, it

is also evident that Yp+2 E og if uTaip+, = 0, etc. However, since
u E (a1, , am), it cannot be orthogonal to every a, unless it is
the zero vector. Suppose, then, that Il u Il = v > 0. Because of
Assumption 2, there must now be a first index r > p such that
uTa_, l = 0 and, consequently, Yr C g but uTai, 7& 0. It is
straightforward to show that Ily,+1 11 < v if t is chosen small
enough. The following inequality is not difficult to establish:

IlY+ 1112 = Ilyl ||2 -ai _l2 J2)(yYa 12lat,l
< v2 + o2 + 26ev - y[(uTai, )2 - 28|airl| JuTai,I]
= V2 _ y(uTa, )2 + 0(g)

where some intervening steps using the Cauchy-Schwartz inequa-
lity and the triangle inequality have been left out. The positive
scalar y is the lower bound of (2cr llai,r 2 r-ac2)lai, 12. Since
uTai 0O with u a fixed vector and ai, a member of a finite vector
set, it is evident that the choice of an 6 small enough leads to the
contradiction IlYr+ 1 ||2 < v2. Thus, u must be the zero vector and
by Lemma 1, the sequence {Yk} converges to zero.
The theorem is now an obvious consequence of Lemma 2.
Proof of the Theorem: Let x C E be arbitrary with the decom-

position x = x1 + x2 where xi E Y(as, -*, am) and
x2 E Y'(a,1 , a.). Consider the sequence of vectors
Tkx = Tkx1 + Tkx2. By Lemma 2, Tkxl converges to zero; on the
other hand, Tkx2 = x2 for all k since x2 is orthogonal to every aj.
Thus, limk Tk x = x2, or the component of x on ft(a1, , am).
Since x was arbitrary, the theorem has been proven.

If the set {a,, , am} spans i", then the projection matrix on
(a1, ---, am) is the zero matrix and the following corollary

holds true.
Corollary: Let the assumptions of the theorem hold and let

f(ai, , am) = . Then {Tkl diverges to the zero matrix.

III. AN APPLICATION: ADAPTIVE FILLING
OF AN ASSOCIATIVE MEMORY

In [3] and [4], the infinite product of (1) is used in a model of
adaptive formation of an associative memory, associating a set of
q-dimensional yectors b1, , bm with the previously introduced
n-dimensional vectors a1, , am, according to the following
recursion:

Mk = Mk-1 + Ock(bk- Mk 1 ajd)a

= Mk_ .(I - Ockaikaik)T + Otkbika1k (6)

with Mo an arbitrary (q x n) matrix. Reid and Frame [7] have the
same problem with all vectors aj of unit norm and each ccj equal to
one. It is now possible to show that under Assumptions 1 and 2, a
necessary and sufficient condition for the convergence of {Mk} is

that the set of equations

Ma1 = b1, j= 1, , m (7)
has a solution, i.e., there exists an associative mapping M between
the vector sets {a,, ., am} and {bl, , b.}. If {M,k} converges, then
the limit matrix is a solution of (7), and has the explicit form [4]

M = BA + Mo(I-AA+) (8)
with B and A matrices having the vectors bj and aj as columns. An
important special case assumed by Reid and Frame [7], in which
(7) always has a solution, is the linear independency of the vector
set {a1, .., am}.

If algorithm (6) were actually used for numerical computations
to solve (7) for M, then it would naturally be desirable to use an
optimal choice of the free parameters cc, and i, at each step r. It is
easy to show that the speed of convergence of (6) is directly related
to that of the norm sequence {IlYk II} in (5), which immediately
shows [because of (5)] that the best value for ak would be 11 aik 11 -
making the elementary matrix I - cck a, aTidempotent. A good
way to choose ik would then be a cyclic sequence.
However, an iteration like (6) where all but one of the

eigenvalues of the iteration matrices are unity has usually bad
numerical behavior, and it may be questioned whether it would
yield satisfactory results in large dimensional cases with many
continuous-valued vectors, if small iteration errors were desired.
On the other hand, if (6) is used as a model of a dynamical
adaptive physical system, then the conditions imposed by
Assumptions 1 and 2 cover a wide range of possibilities for the
gain and input sequences.
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For fanout-free functions, recursive formulas for TND(n) and DND(n),
the number of n-p-n-equivalence classes of n-variable functions and
p-equivalence classes of n-variable functions, respectively, are
derived. For unate cascade functions, a recursive formula for fND(n),
the number of n-variable functions, and formulas for UND(n) and
'ND(n), the number of n-p-n-equivalence classes and p-equivalence
classes, respectively, are derived. Some asymptotic properties of
IND(n), UND(n), and TND(n) are also examined and it is shown that
OND )/l(n) -+ 1/2-, UND(n)/U(n) -- 1/2, and WND(n)/T(n) -+

1/ 2 as n -* o, where /(n) is the number of distinct unate cascade
functions of up to n variables, and U(n) and T(n) are the number of
distinct n-p-n- and p-equivalence classes of unate cascade functions
of up to n variables, respectively.

Index Terms-Cascade, disjunctive networks, enumeration of
equivalence classes, enumeration of switching functions, fanout-free
function, threshold function, unate function.

I. INTRODUCTION
In this correspondence, several previously unsolved enumera-

tion problems are considered. The first considered here concerns
fanout-free functions, which can be realized by circuits satisfying
the following restrictions.

1) They are constructed from the two-input unate gates (AND,
OR, NAND, and NOR, etc.) and NOT gates (inverters).

2) The fanout of each gate is one.
3) Each primary input line connects to the input of exactly one

gate.
The class of fanout-free functions is a special class of functions

which are realized by disjunctive networks. Disjunctive networks
satisfy the restriction 1') instead of 1) in addition to 2) and 3)
stated above.

1') They are constructed from arbitrary two-input gates and
NOT gates.

Disjunctive networks have been studied by Levy, Winder, and
Mott [1], Maruoka and Honda [2], and Butler and Breeding [3].

Butler [4] has recently derived expressions for NdiS(n), the
number of n-variable functions realized by disjunctive circuits
constructed from EXCLUSIVE-OR gates as well as unate gates.
Hayes [5] has recently derived expressions for 4ND(n), the

number of n-variable fanout-free functions.
In Section III, we derive formulas for TND(n) and ODND(n), the

number of n-p-n-equivalence classes and p-equivalence classes,
respectively, of n-variable fanout-free functions. These formulas
have been computed for values of n up to 8.
The second enumeration problem considered here concerns

unate cascade functions which can be realized by unate cascade
circuits satisfying restrictions 1), 2), and 3) stated above and the
following.

4) Each gate connects to at most one output line of another
gate.
The class of unate cascade function is a special class of cascade

realizable functions. A cascade satisfies restrictions 1'), 2), 3), and
4). Cascades have a number of interesting properties and have
been the subject of many papers [6]-[12].
Frecon [24] has considered many enumeration problems for

cascades. Chakrabarti and Kolp [20], and Butler [4] also have
derived expressions for the number of n-variable functions
realized by cascades constructed from EXCLUSIVE-OR gate as well
as unate gates. Sklansky, Korenjak, and Stone [13] have derived
expressions for the number of n-p-equivalence classes of cascade
realizable functions. Enumeration problems dealing with other
types of functions have been considered in the literature [14]-[16],
[21].

x
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Fig. 1. Fanout-free circuit.

In Section IV, we derive formulas for ND,(11), the number of
n-variable unate cascade functions, UND)(n) and T'NI)(n), the num-
bers of n-p-n-equivalence classes and p-equivalence classes, re-
spectively, of n-variable unate cascade functions. These formulas
have been computed for values of n up to 8. Some asymptotic
properties of iND, UND, and TND are also examined.

II. BACKGROUND

In this correspondence, it is assumed that circuits are con-
structed using unate elements (AND, OR, NAND, NOR, and NOT, etc.)
only. First we define fanout-free functions and fanout-free circuits.

Definition 2.1 [5]: The functions 0, 1, x, .X, are fanout-free. If
f1(X1) and.f2(X2) are fanout-free functions and {X 1}r1 {X2} = 0,
then f5(X,), fl(XI) .f2(X2), and fi(Xs)v12(X2) are fanout-free,
where {X1} and {X2} denote the sets of variables in X1 and X2,
respectively. The only fanout-free functions are given above.

Definition 2.2 [5]: A combinational circuit N is fanout-free if it
has a single primary output line, and every other line in N is
connected to an input of exactly one gate.
The foregoing definitions imply that a function is fanout-free if

and only if it can be realized by a fanout-free circuit. For example,
the function realized by the circuit of Fig. 1 is fanout-free.

It can easily be shown that every fanout-free function is unate,
but the converse is false.

Definition 2.3 [5]: Let f(X) be any function. The AND rank off
is the largest number r such that there exist r functions f1', .J.
and a partition {X1, X2, , X,} of X with the property

f (X)=)f (X )f2 (X2) ... fr(X)
and

{Xi}r {Xj}= 0 (i o j).
A functionf(X) is termed degenerate if it is independent of one

or more variables in {X}; otherwise it is nondegenerate.
Definition 2.4 [5]: 4(n) is the number of distinct fanout-free

functions of up to n variables. OD(n) and 1ND(n) denote the
number of degenerate and nondegenerate fanout-free functions of
n variables, respectively.'

Clearly

+O(n)==D(n) + OND(n),
and

n-I

OD(n) = QC(n, i) * OND(i),
i =O

where C(n, i) denotes the number of combinations choosing i
objects out of n objects,

Definition 2.5 [5]: A(n, r) is the number of nondegenerate
fanout-free functions of n variables with AND rank r.

' The subscripts D and ND denote degenerate and nondegenerate functions, re-
spectively. Similar notation will be used throughout this correspondence.
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TABLE I
THE NUMBER OF FANOUT-FREE FUNCTIONS AND UNATE CASCADE

FUNCTIONS

Fanout-free function Unate cascade function

number of number of P- number of NPN- number of number of P- number of NPN-
functions eq. classes eq. classes functions eq. classes eq. classes

n ND ND (n) TND (n) ND (n) ND(n) uND (n)

1 2 2 2 21

2 8 6 18 61

3 64 20 2 64 20 2

4 832 80 5 736 68 4

5 15104 340 12 10624 232 8

6 352256 1570 33 183936 792 16

7 10037248 7540 90 3715072 2704 32

8 337936384 37610 261 85755392 9232 64

Lemma 2.1 [5]:
n

A(n, 1)= E A(n, r), kND(n) = 2A(n, 1), (n . 2).
r = 2

Table I shows the values of 4ND(nl) for n < 8.

III. THE NUMBER OF EQUIVALENCE CLASSES
OF FANOUT-FREE FUNCTIONS

In this section, we will derive recursive formulas for the number
of n-p-n-equivalence classes and p-equivalence classes of fanout-
free functions.

Definition 3.1: f is n-p-n-equivalent to g, denoted by.J nZ g, if
g can be obtained from.f by any combination of the foliowing
three operations:

1) Negation of one or more variables off.
2) Permutation of variables off.
3) Negation of f.
Definition 3.2:f is p-equivalent to g, denoted byf- g, if g can be

obtained by permutation of variables off
Obviously, the binary relations ~ and P are both equiv-

alence relations.
Definition 3.3 [5]: The circuits which satisfy the following struc-

tural constraints are said-to be type A circuits.
1) They are fanout-free and contain AND, OR, and NOT gates

(inverters) only.
2) Inverters can only appear in the primary input lines of the

circuits, with at most one inverter per primary input.
3) Every AND and OR gate has at least two input lines, and

AND(OR) gate cannot be directly connected to the input of another
AND(OR) gate, i.e., AND and OR gates must alternate along every
path in the circuit.

Every fanout-free function has a unique type A realization.
Example 3.1: Fig. 1 shows the type A realization of

f(X) = (X1 X2 V .3 V x4).i5 X6-
Definitioni 3.4: The rooted tree T which satisfies the following

conditions is called the tree ofafanout-free functionf In the type A
realization of f

1) The output gate corresponds to the root of T.
2) Primary input terminals, AND gates, and OR gates corre-

spond to nodes of T. (Inverters are neglected.)
3) Input lines of gates correspond to edges of t.
Example 3.2: Fig. 2 shows the tree of the fanout-free function of

Example 3.1.
Lemma 3.1: If . and g are fanout-free functions andfnf ,

then the trees of f and g are isomorphic.
The tree of an n1-variable fanout-free function has exactly n

leaves (nodes whose out-degrees are zeros), and the out-degree of

Fig. 2. Tree off(X)= (xlX2VX3Vx4),T X6-

every node except the leaves of the tree is at least two. Conversely,
a tree which satisfies these conditions corresponds to an n-p-n-
equivalence class of a fanout-free function.

Next, we will derive a recursive formula for TND(n), the number
of distinct n-p-n-equivalence classes of n-variable fanout-free func-
tions. Since the functions which belong to an n-p-n-equivalence
class of a fanout-free function have a unique tree, TND(n) is equal
to the number of distinct trees of n-variable fanout-free functions.
Examfle 3.3: Fig. 3 shows all the trees of fanout-free functions

of up to four variables.
Definition 3.5: N(n) is the number of distinct trees of n-variable

nondegenerate fanout-free functions. N(n, r) is the number of trees
of n-variable nondegenerate fanout-free functions whose roots
have outdegree r.

Theorem 3.1:2

TND(n) = N(n); N(1) = 1;
n

N(n)= E N(n, r), for n > 2;
r=2

N(n, r) = El v(il, i2, *. , ir);

where

V(is, i2, - ir) =, H|2 C(N(jk) + ak - 1, ak).
k=1

5 and H2 denote the computation over the combinations
such that

(il, i2, i,i) = (il, il, 9 ilg j29 h2 i 2 ...isis,js is)
a, a2

= ((j )ao (j2 2, ..., (j r.);

2 Cayley [23] has calculated N(n), but [23] does not contain the recursive formula.
We will include the proof because similar technique will be used throughout this
correspondence.
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Fig. 4. Enumeration of v(i1, i2).

Fig. 3. Trees of fanout-free functions of up to four variables.

il < i2 < .. < i; il + i2+ -- + ir= n;

il <j2 < <1j, and a1+a2+*-+a,=r.

Proof: Obviously,
n

N(n)= E N(n, r), for n > 2.
r=2

To obtain N(n, 2), consider the tree structure with the root of
out-degree two, as shown in Fig. 4. Suppose this tree structure has
two subtrees of i1 variables and i2 variables (i1 + i2 = n), and let
v(i1, i2) be the number of distinct trees of this type. When i1 < i2,
we obtain

v(i1, i2) = N(i1)N(i2)= C(N(il), 1) C(N(i2), 1).

When i1 = i2, by considering the symmetry, we obtain

v(i1, i2) = C(N(i1) + 1, 2).

To obtain N(n, r), consider the tree structure with the root of
out-degree r, as shown in Fig. 5. Suppose this tree structure has r

subtrees of i1 variables, i2 variables, ..., i, variables (i1 + i2 +
* + ir = n), and let v(i1, i2, ., i.) be the number of distinct trees
of this type. When i1< i2 < * < it, we have

v(i1, i2, , i) =N(ii)N(i2) * N(i,)

C(N(in), 1) C(N(i2), 1)

C(N(i,), 1)
When

and

(i i2,) ..-- ir) = ((lr%l (hr)7, - (jsas)

and

il <h2 < ... < is,

we have

v(il, i2, * ir) = C(N(jj) + a1 -1, a)

C(N(j2)+ a2-1, a2)

C(N(js) + a. 1, a,).

Hence, we obtain the theorem. Q.E.D.

Table I shows the values of TND(n) = N(n) for n < 8.

Next, we will derive the recursive formula for OIND(n), the

number of distinct p-equivalence classes of n-variable fanout-free

functions of n variables.
Definition 3.6: B(n, r) is the number of distinct p-equivalence

ig

Fig 5. Enumeration of v(i,, i2, ... i,).

is

Fig. 6. Illustration of Theorem 3.2.

classes of n-variable nondegenerate fanout-free functions with

AND rank r.

Theorem 3.2:

OND(n) = 2 B(n, 1); B(1, 1) = 1;

B(n, 1) = , B(n, r), (n 2);
r=2

B(n, r) = E3 4(il, i2, ,;

where

p(i1, i2, i4) =(a, + 1) n4 C(B(j,) + ak- 1, ak);
k=2

and

B(jk) = B(jk, 1).

Z3 and Hl4 denote the computation over all combinations such
that

(ili i2q .., ir) = ((I)aj, (j2)a2, ... j,a)
il i2 <*- < ir, il + i2 + *- + ir=n

l<1j2< .< js, and a1+ a2+ - + a=r.

Proof: When the circuit is drawn as in Fig. 6, we can write

(i 1, i2, , i) =(1U,j2, h3, ,ijs

n=l n=2
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Let p(il, i2, * *, ir) be the number of distinct p-equivalence classes.
In Fig. 6, there are (a1 + 1) ways of complementing the variables
of the AND gate, since there may be no inverter, one inverter, two
inverters, -, and aI inverters. When 1 < j2 <. <j,, we have

4(i1, i2, *--, 4) = (a, + 1)B(j2)B(j3) -- B(j,)

= (a, + 1) C(B(j2), 1) C(B(j3), 1)

*--- C(B(j,), 1).

When

and

and

1<12 <13 < <j

Similarly, we have

ftl(il, i2, * ,ir)

= (a1 + 1)C(B(j2) + a2 -1, a2)C(B(j3) + a3 -1, a3)
C(B(j,) + a, - 1, as).

The first and the second equations can be proven in a similar way
to Lemma 2.1. Hence, we obtain the theorem. Q.E.D.

Table I shows the values of DND(n) for n < 8.

IV. THE NUMBER OF UNATE CASCADE FUNCTIONS
In this section, we will derive formulas for VND(n), the number

of n-variable unate cascade functions, UND(n), the number of n-p-
n-equivalence classes of n-variable unate cascade function, and
TND(n), the number of p-equivalence classes of n-variable unate
cascade functions.

Definition 4.1: The functions 0, 1, x, x are unate cascade func-
tions. If f(X) is unate cascade function and {X} n {x"+ l} = 0,
then f (X), f (X) x*+ , and f(X) v x*+ are unate cascade func-
tions, where x*+ denotes x. + 1 or Xn +,1 The only unate cascade
functions are those given above.
Example 4.1: The function of Example 3.1 is a unate cascade

function.
It is known that a unate cascade function can be realized by a

cascade of two-input unate elements.
Lemma 4.1 [18]:.fJ(X) is a unate cascade function if and only if

tf(X) is a fanout-free threshold function.
The class of unate cascade function is a special class of thre-

shold functions.
Definitioni 4.2: E(n, r) is the number of distinct n-variable non-

degenerate unate cascade functions with AND rank r.
Lemma 4.2: For

ii > r > 2, E(ni, r) =C(ii, r-1) 2r- E(n -r + 1, 1).
For

ii > 1, E(ni, n)= 2n.

Proof An n-variable unate cascade function with AND rank r
can be realized as shown in Fig. 7, where the output line of an
( - r + 1)-variable unate cascade circuit is connected to the
r-input AND gate. In Fig. 7, there are C(ni, r - 1) ways of choosing
(r- 1) variables from Jl, and 2' ways of complementing the
variables. So we have

E(i, r) = C(n, r - 1) 2n-1 .E(n- r +1,1)

-I r

(n-r+1 ) unate cascade

Fcircuit

Fig. 7. Illustration of L'emma 4.2.

for n > r. There are 2" ways of complementing the variables of an
n-input AND gate. So we have E(n, n) = 2n. Hence, we obtain the
lemma. Q.E.D.

Theorem 4.1 :3

ND(n) = 2 * E(n),

where

E(1)=2,E(2)=4
and

n-1

E(n) = E C(n, r- 1) * 2 E(n-r+ 1)+2",
r=2

(n > 3).

Proof: By Lemma 4.2
n - I

E(n, 1) = E C(n1, r-m1) 2r- 1t E(n-rm +2 ,1)+ ,. (n h 2).

Let E(n) = E(n, 1), similar to Lemma 2.1, we have
n

IND(n) = E E(n, r) = 2 * E(n, 1) = 2- E(n).
r=l

Q.E.D.

Table I shows the values of IIND(n) for n < 8.
Conjecture 4.1:3 For large n, /ND(n) 4" * n!, where

a - 0.4426950, , = (2/log, 2) 2.88539008.

Informal proof supporting the conjecture: Let qIND(n) = cfJnn!.
Substituting it into the formula of Theorem 4.1, we obtain

n-1
(j)c43n!= 5 C(n, r- 1)2r-1(i)4n _f-(r-l) * (n-r + 1)! + 2.

r=2

Dividing both sides by (4jo4n!, we have

n-1 2 r 2n

1=2 (r-1)! p-(r-) +1/In!.

As n oo, we have

(2/fly' _ ____~~(2/#
r=2 (r - 1)! k=1 k0

Thus B = (2/loge 2) - 2.88539008.
Let ND(n) = a(2/log, 2)" n !. By using the value of l/INA(n) for

n = 8 shown in Table I, we have a l/JND(8)/(#f - 8!) 0.4426950.
Thus, we obtain the conjecture.

This approximation is very good. For n = 2, 3, 4, 5, 6, and 7, the
percentage errors are 7.9, 0.3, 0.06, 0.005, 0.0006, and 0.00008
percent, respectively.

Conjecture 4.2: @ND(n)/4(n) -+ 1/ 2 (n -+ cc).
Informal proof supporting the conjecture: Let ON4D(n) = 4"#n!

and 4(n) be approximations for iND(n) and //D(n), respectively.
(,B= 2/loge 2.) Obviously

0*n
- 1 /n n- ,,n!

/D(n)= E (j)V'DQ) =i ! (n! pi*i

3After the submission of this correspondence, the authors were informed that
Fr&con [24] and Bender and Butler [22] have independently obtained similar results.
In particular Fr&con has obtained an upper bound for QND(n), and Bender and Butler
have shown that frND(n) -'a'n!, where a -e P/2 - 1 and ,B = (2/log, 24
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Let n - i = k. We have

}s*(n) = aX N*k:D(n) klk
Clearly

f*(n) _frND(n) + /*(n) _ 1fr3(n)
IND(n) 1ND(n) 1 D(n)

Hence, as n oo

0I*(n) ao(1/fit
4D(n) +E(k!=e /

Thus, we have the conjecture.
The authors have not obtained complete proof of this conjec-

ture, but the data of Table I show that ND(n)//(n) approaches to
1/ 2 as n increases. For n = 3, 4, 5, 6, 7, and 8, the percentage
errors are within 6, 0.9, 0.08, 0.004, 0.0002, and 0.0003 percent,
respectively.

Theorem 4.2:

UND(n)= M(n),
where

M(1)= 1, and for n > 2, M(n)= 2"-2.

Proof: The class of unate cascade functions is a special class
of fanout-free functions. Therefore, the proof can be done in a
similar way to that of Theorem 3.1. Let M(n, r) be the number of
distinct trees of n-variable nondegenerate unate cascade function
whose roots have out-degree r, and let M(n) = M(n, 1) Since

(il, i2, .. X ir) = () ,n - r +1)
we have

V(il, i2, , ir)= C(M(1) +(r- 1) + 1, r- 1)
C(M(n - r +1),1)

= M(n-r+ 1).

Therefore, we obtain M(n, r) = M(n - r + 1), and
n n n-1

M(n)= MM(n, r)= rM(-+ 1)= M(i),
r=2 r=2 i=1

where

M(1)= 1.

Hence, we obtain

M(n)= 2"2, (n 2 2). Q.E.D.

Theorem 4.3:

UND(n)/U(n) ;, as n oo.

Proof: Obviously, we have

n-1 n-i

UD(n)= E UND(i)=1+1+ 2 =22 +1.
i=0 i=2

Therefore

UND(n) UND(n) 2n2

U(n) UND(n) + UD(n) 2n-2+ 2n-2+1 2+ 22-n

Hence

UND(n) as n oo
U(n) 2'

Q.E.D.

Definition 4.3: D(n, r) is the number of distinct p-equivalence
classes of nondegenerate n-variable unate cascade functions with
AND rank r.
Lemma 4.3:

D(1, 1)= 1;

D(n, r)-rD(n-r + 1,1), (n > r);

D(n, n) = n + 1,

D(n, 1)- E D(n, r),
r=2

(n > 2);

(n 2 2).

Proof: An n-variable unate cascade function with AND rank r
can be realized as shown in Fig. 7. There are r ways of com-
plementing the variables of the AND gate. Therefore

D(n, r) = r-D(n - r + 1, 1).

There are (n + 1) ways of complementing the variable of the AND
gate with AND rank n. So, D(n, n) = n + 1. Similar to Lemma 2.1,
we have

Q.E.D.
n

D(n, 1)= E D(n, j).
j=2

Theorem 4.4:

PND(n) = ('){(2 + 2)2 + (2 - )2fl, (n 2 1).
Proof: Let D(n) = D(n, 1). By Lemma 4.3, we have

D(n)= Z r * D(n-r + 1) + (n + 1), (n > 3).
r=2

This recursive formula satisfies the following relation:

D(n) - 4-D(n - 1) + 2-D(n - 2) = 0. (4.1)

By solving (4.1) under the conditions of D(1) = 1 and D(2) = 3, we
have

D(n)= (T){(2 + 2-r + (2- 2)}-.

Since 'ND(n)= 2 * D(n, 1) = 2 - D(n), we have the theorem.

Theorem 4.5: Q.E.D.

WND(n)/'(n) -- 1//E2 as n -+ o.

Proof: By Theorem 4.4, TND(n) can be written as

TND(n) = a(fi + y"),

where

a = ,f=2+ 2 and y=2-/2.
Clearly

n-1 n-i
TD(n) = E TND(i) = E (fl + 7i)

i=O i=O

Therefore, we have

sID(n) _1 JND(n) as n-x.
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Hence

TIND(n) TND(n) 1

T(n) TND(n) + TD(n) 1 + 1/(fl - 1)

- g asncoo. Q.E.D.

It is interesting to compare tAND(n) (the number of unate
cascade functions) with Ncas(n) (the number of cascade realizable
functions). The class of cascade realizable functions includes all
the unate cascade functions as well as many nonunate functions.
Butler [4] has shown that for large n

Ncas(n) y?q' *n!, where y 0.28790 and q, 4.04095.

Theorem 4.2 shows that for large n

V'ND(n) 43'n * n! a /(flV
Ncas(n) n n!

Thus the fraction of unate cascade functions tends to zero as
n o.

It is also interesting to compare 2- UND(n) (the number of n-p-
equivalence classes of unate cascade functions) with Bn (the
number of n-p-equivalence classes of cascade realizable func-
tions).4 Sklansky, Korenjak, and Stone [13] have shown that

BT I -3+ t5n _(3 2 )1 (2.62)' for large n.

Theorem 4.3 shows that for large n

2 UND(n) 2.24 x 2 (2 n

-Bn 4 2.62j.
Thus the fraction of the number of n-p-equivalence classes of
unate cascade functions tends to zero as n -* oo.

Th-e class of unate cascade functions is a special class of fanout-
free functions. Hayes [5] has shown that almost all fanout-free
functions are nondegenerate, while Conjecture 4.2 shows that
1/X/2 of unate cascade functions are nondegenerate.
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On Transposing Large 2' x 2n Matrices

MORDECHAI BEN ARI

Abstract This correspondence presents two variations on the
algorithm of Eklundh for transposing large 2' x 2' matrices. The
first variation shows how the number of accesses to secondary storage
may be reduced at the expense of an increased amount of data
transferred. Formulas for I/O time are derived from which we
deduce the disk characteristics under which there is an improvement.
The second variation shows that a small amount of additional
secondary storage can be used to greatly improve the performance of
the algorithm.

-Index Tei'ms Digital image processing, externally stored
matrices, large matrices, transportation algorithm, two-dimensional
FFT.

I. INTRODUCTION

The implementation of a two-dimensional FFT for digital
image processing requires efficient implementation of a matrix
transpose for large externally stored matrices. Eklundh [3] (and
independently Floyd [4]) gave a description of an algorithm for
transposing large matrices stored as a sequence of rows on a
random access device using very little memory. Twogood and
Ekstrom [6] improved the CPU time of the algorithm when-more
memory is available and in [1], [2], and [5] we find generalizations
to nonsquare matrices.

This investigation is concerned with improving the I/O perfor-
mance of the algorithm. While the discussion is for 2' x 2'
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