
CORRESPONDENCE

obvious that X2 should be preferred to X3 since the X2 result,
whether positive or negative, will affect the class probabilities
while X3 cannot cause any change. In fact, assume that X2 is
tested and a positive result is obtained, then the class probabilities
are transformed to

Class C1 C2 C3 C4

7t(3) 0.089 0.727 0.104 0.080

The probability of error is still 0.2737. Parenthetically, let us note
that if the Shannon information gain rule is used, feature X2 will
indeed be preferred, since its information gain is 0.038 versus
information gain of 0 from X3.

V. APPLICATIONS
The concept of irrelevant features is of particular importance

for problems where experts knowledge about the class structure is
widely used. For this type of problems the following approach for
model building and utilization is suggested.

Stage 1: Define the classes for the system under consideration.
For each of these classes identify the features which are significant
for the recognition of this class and estimate, either subjectively or
by data, the corresponding conditional distribution. Store these
data in List I.

Stage 2: Based on the information contained in List I, generate
for each feature a list of the classes for which it is relevant and
their corresponding probabilities. Call this list List II. For each
single feature Xj, review this list and verify that all the relevant
classes to this feature are included. In case that a relevant class,
say ci, is missing, revise the pattern of ci in List I by adding Xj
with its conditional probability to the pattern of ci. Obviously List
II is updated accordingly. This review may also suggest
modification of subjective probabilities to obtain a proper pro-
portion for the distribution of this feature over the relevant
classes.

This approach is being used in the development of a computer-
aided medical decision system for emergency and critical care
settings, and has been found to be very useful for improving sub-
jectively characterized patterns of medical disorders.

This approach also provides us with an efficient computational
tool. Once a feature is observed, its location in List II is addressed.
The prior probabilities for its relevant classes are normalized, and
the posterior probabilities are computed following (8) and (9) in
Theorem 2. This way, instead of storing the whole pattern matrix
we only store List II. The saving in storage is substantial when
many irrelevance relationships exist. For instance, in a system for
diagnosing infertility disorders in females (Schild, Gavish and
Lunenfeld [5]; Ben-Bassat [3]), 68 classes (disorders) are charac-
terized by a total of 188 features. However, for most of the classes
in this system only 20 to 30 features are relevant, which implies a
saving of 60-90 percent by using List II instead of the pattern
matrix.

VI. SUMMARY
The concept of irrelevant features in Bayesian models for pat-

tern recognition is introduced, and its mathematical meaning is
explained. A technique for computing the conditional probabil-
ities of irrelevant features, if necessary, is described. The effect of
irrelevant features on feature selection in sequential classification
is discussed and illustrated.
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Realization of Minimum Circuits with Two-Input
Conservative Logic Elements

TSUTOMU SASAO AND KOZO KINOSHITA

Abstract-.This correspondence is concerned with the realization
of logical functions by using two-input three-output conservative
logic elements (CLE's) called IB'
A conservative logic element is a multiple-output logic element

whose number of "l's" of the input is equal to that ofthe correspond-
ing output, and whose fan out of each output terminal is restricted to
one. In order to realize arbitrary functions, it is necessary to use
constant-supplying elements C I's. The minimum circuit is a circuit
which consists of minimum number of C l's and minimum number of
1B elements. In this correspondence, we give lower bounds on the
number of I B elements in the circuit and two minimum decomposition
theorems. These results are useful for the verification of the minimal-
ity of a given circuit and for the realization of minimum circuits.
Several examples illustrate this.

Index Terms-Conservative logic elements (CLE's), logic design,
logic minimization, magnetic bubble logic, switching theory.

I. INTRODUCTION
A conservative logic element (CLE) is a multiple-output logic

element whose weight of an input vector is equal to that of the
corresponding output vector [1]-[3]. In [4], we have shown that
not only magnetic bubble logic elements, but also fluid logic ele-
ments, transfer relays, current-mode logic elements without power
sources, and so on -are all CLE's. In order to realize an arbi-
trary function, it is necessary to use constant-supplying elements
(CSE's). A C1 supplies a constant "1" and a CO supplies a constant
"0." Both a C1 and a C0 are called CSE's. It is assumed that the
fanout of each output of a CLE or a CSE is one. In the case of
magnetic bubble logic elements, the Cl corresponds to a magnetic
bubble generator and the C0 corresponds to connecting nothing.
In the case of current-mode logic element, the C 1 corresponds to a
constant current source and the C0 corresponds to connecting
nothing.

In [8], we have considered the universality of two-input CLE in
relation to the number of C1's. The IB element shown in Fig. 1 is a
two-input three-output CLE and it has been shown that any logic
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t[Mi ,l] ~~~~~~~xl_Ix2 k[Mi ,3]
M. x x2 t[M, 4]1 ~~~12

Q[M; ,2] X2 X2 1t[M 51
Fig. 1. IB element.

function can be realized by I, elements and at most two Cl's. A
minimum circuit is a circuit which consists of minimum number
of Cl's and minimum number of IB elements.

In [5], [6], and [8], we have shown that the minimum circuit of
most function have the characteristic circuit structure called "1-4
form." Examples of the 1-4 form are shown in Figs. 2, 7, 8, and 10.

In this correspondence, we derive some properties of minimum
circuits. These results are useful for the realization of minimum
circuits. In Section II, we give some definitions and summarize
previous works. In Section III, first we give lower bounds on the
number of elements in minimum circuits. These bounds are useful
for the verification of the minimality of a given circuit. Second, we
give two minimum decomposition -theorems. These theorems
show that a minimum circuit can be obtained by realizing a min-
imum circuit of fewer variables in some cases.

II. DEFINITIONS AND BASIC PROPERTIES
In this section, we give some definitions and summarize results

of previous work [8]. f(X) denotes n-variable function f(xl,
X2, "*, x").

Definition 2.1:
1) A function f(X) is said to be the g1 1 function iff (0, 0,

0) = 1. A set of gI1 functions is denoted by G11.
2) A function f(X) is said to be the 92 function iff 0 G11 and

there exist no xi such thatf(X) = xi * g(X\i), where g(X\i) repre-
sents a function of a set of variables X except xi. A set of g2
functions is denoted by G2.

3) A function f(X) is said to be the g52 function if there exists
an xi such that f(X) = xi * g(X\i) and g(X\i) E G2. A set of 912
functions is denoted by G12.

4) A function f(X) is said to be the go, function if there exists
an xi such that f(X) = xi g(X\i)and g(X\i) E G11. A set of go,
functions is denoted by Go0.

5) A functionf(X) is said to be the g02 function if there exist xi
and xj such thatf(X) = xi x; * g(X\i, j) or iff(X) =s 0. A set of
902 functions is denoted by G02.
Any function belongs to exactly one of the above five sets (see Fig
3).

Definition 2.2: A set of circuits which consist of IB elements and
k or less than k Cl's is denoted by {IB: k}. A set of functions which
can be realized by the circuit in {IB: k} is denoted by [IB k].
The next theorem shows the necessary and sufficient number of

Cl's to realize a given function.
Theorem 2.1: Iff E Go, u Go2 thenfe [IB:0]. Iff e G1Iu G12

then fe [IB: 1] and f [IB: O]- If fE G2 then fe [IB: 2] and
f X [IB: 1] and fH [IB: ]-

Definition 2.3: A circuit which realizes a function f with m IB
elements and minimum number of C1's is denoted by Rm(f).
Rm(f ) is said to be minimum if there is no R8(f ) such that s < m.

Definition 2.4: For a IB element, the input lines and output lines
are denoted as shown in Fig. 1. l[Mi, 1] is said to be the immediate
predecessor of l[Mi, 3] and l[Mi, 4]. l[Mi, 2] is said to be the
immediate predecessor of l[Mi, 5]. The function corresponding to
line 1i is denoted by f(l1). For simplicty, f(l[Mi, j]) is denoted by
f(M,, j).

Definition 2.5: Let P: 10, 11, , Im be a sequence of lines in a
circuit. P is called a path if 'i_ 1 is the immediate predecessor of Ii

f(X)

x
n

Fig. 2. A typical example of the 1-4 form.

f(O,O,...,O)=O f(O,O,...,O)=l
Fig. 3. Classification of functions.

for i_= 1, 2, ,, m - 1. Especially when lo is an input line and lm is
an output line of the circuit, P is called the 1-0 path. A path P is
said to have 1-4 form if all lines l[Mi, 1] and I[Mi, 4] are included
in the path for all elements Mi which are connected to the lines in
P. The circuit is said to have the 1-4 form if the 1-0 path has the
1-4 form.
Lemma 2.1: Let lo, l, , 1p be a path of a circuit. Then

f(lo) f(l1) ff(l-P).
The next theorem shows that minimum circuit of most func-

tions have the characteristic circuit structure called 1-4 form.
Theorem 2.2: Let Rm(f) be a minimum circuit. R^(f) has the

1-4 form if and only iff 0 G02.
Definition 2.6: Either the variable or the C1 which is connected

to the input line of a path is said to be the source of the path.
By Theorems 2.1 and 2.2, and Lemma 2.1, the following

theorem is obtained.
Theorem 2.3: In a minimum circuit Rm(f ), the source of the 1-0

path is C1 if fe G1l u G2, or xi if fE Go, u G12 and
(X) = Xi g(X\i).
Lemma 2.2: Let Rm(g(X\i)) be a minimum circuit and g(X\i) E

Gil u G2. If the source of the I-0 path is replaced by a variable
xi, then a minimum circuit Rm(f) which realizes the function
f(X) = xi * g(X\i) is obtained.

Proof: Similar to Lemma 5.6 of [8]. Q.E.D.
Theorem 2.3 and Lemma 2.2 imply that if f(X) E Go1 u G12

and f(X) = xig(X\i), then a minimum circuit off(X) can be ob-
tained by the minimum circuit of g(X\i) e G11 u G2.

III. REALIZATION OF MINIMUM CIRCUITS

In this section, first we give some lower bounds on the number
of elements in a circuit. These bounds are useful for the
verification for the minimality of a given circuit.
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The number of elements in the I-0 path of Rm(f ) is denoted by
L(Rm(f)).
Lemma 3.1: In a minimum circuit Rm(f) if fe G2 then

L(Rm(f)) > 2.
Proof:fe G2 impliesfE G1 l. Since the source of the 1-0 path

is C1 and Rm(f ) has the 1-4 form, if L(Rm(f)) = 1 then the circuit
must be in the form shown in Fig. 4. But to realize fE G2, it
requires two Cl's. This contradicts the condition of Rm(f ).

Q.E.D.
Lemma 3.2: In a minimum circuit Rm(f), if fe G11 then

L(Rm(f)) . k, where
n

k= Z f(ei) and ei=(O, O, ,O, 1, O, ,O).

Proof: Since the source of the 1-0 path is C1 and Rm(f) has
1-4 form, f can be represented as f= g1 * 92 gp or = g1 V
g2v ... v gp, where 91, 92, '', gp correspond to the functions
shown in Fig. 2. When f(ei) = 1, at least one g, in tgl, g2, , gp}
becomes to " 1." gt 0 G l, u G2, because if not so it contradicts the
definition of Rm(f ). So g, can be written in a form g, = xi h(X\i)
such that h(X\i) E GI 1. If f (ei) = f (ej) = 1 (i #j), then there exist
two functions such that g,, = xi h1(X\i) and g,2 = xjh2(X\j) in {g1,
92 .., gp}. Therefore p 2 k. Q.E.D.
Lemma 3.3: In a minimum circuit Rm(f ), iff E G11 satisfies the

conditions 1) and 2), then L(Rm(f )) . n C2
1) f= 1 when exactly one input is "1."
2) f= 0 when exactly two inputs are "1."

Proof: Since f E G1 1, Rm(f ) has the 1-4 form and the source
of the 1-0 path is C1. Similar to Lemma 3.2, f is represented as
f= g1 v92 v v gp. Conditions 1) and 2) imply that some of gk'S
can be written as gij = xixjh(X\i, j) such that h(X\i, j) E Gll.
Condition 2) also implies that {g1, g2, - , gp} includes all gij for all
pairs of input variables. Therefore p 2 ,C2 Q.E.D.
Lemma 3.4: In a minimum circuit Rm(f ), iff J G02 then l[Mi, 2]

of the element M, in the 1-0 path is not connected to l[Mj, 5] of
other elements Mj.

Proof: Suppose that l[Mj, 5] is connected to l[Mi, 2]. As
f G02, Rm(f) has the 1-4 form and l[Mi, 4] is in the 1-0 path.
f(Mj, 2) = 0 implies f(Mj, 3) = 0, and f(Mj, 2) = 1 implies
f(Mi, 4) = 0 and f(X) = 0 independently of values of f(Mj, 3)
andf(Mj, 4). So Mj can be replaced by two lines as shown in Fig.
5(b) without changing the output function. This contradicts that
Rm(f) is minimum. Q.E.D.
Lemma 3.5: Let Rm(f) be a minimum circuit andfE G11. Iff

cannot be written in a form f= xi g(X\i) then m 2 2p, where
p = L(Rm(f)).

Proof: Let M, be an element in the I-0 path. By Lemma 3.4,
I[Mi, 2] is connected to either l[Mj, 3] or l[Mj, 4] or a variable.
Since Rm(f) has the 1-4 form, if both l[Mj, 3] and l[Mj, 4] are
connected to the elements in the 1-0 path, then it can be repre-
sented as Fig. 6. By Lemma 2.1, f(X) can be written asf(X)=
f(M3, 3) * f(Mj, 4)h. Note that f(Mj, 3) * f(Mj, 4) = f(Mj, 1).
Mj can be replaced by two lines shown in Fig. 5(b) without chang-
ing the output function. Therefore, the second terminal of each
element in the 1-0 path is connected to a different element or a
variable. If I[Mi, 2] is connected to a variable xj, thenf(X) can be
written in a form f(X) = xjh(XV) and this contradicts the
assumption. Therefore m > 2p. Q.E.D.
Example 3.1: Let Rm(f) be a minimum circuit of

f= xlx2x3vx2x3. As fe G11 and f(e1)+f(e2)+f(e3)=3,
L(Rm(f )) > 3 by Lemma 3.2. Asf(X) cannot be written in a form
f(X) = xi * g(X\i), m > 6 by Lemma 3.5.f(X) can be realized as
Fig. 7 with 6 elements, so it is minimum.

f(X)

f(X) EG2
Fig. 4. Proof of Lemma 3.1.

AIIJ2X]X2 I t_
X2 MJX1X2=2

(a) (b)
Fig. 5. Redundant element.

f(X)

F6[Mio4L

Fig. 6. Proof of Lemma 3.5.

xl

x2 f(X)

Fig. 7. Realization off= XI X2 X3 vx2 x3.

Example 3.2: Let Rm(f) be a minimum circuit of
f= X1* X2 * X1 * X3 * X1 * X4 * X2 * X3 * X2 * X4 * X3 * X4. As f
satisfies the conditions of Lemma 3.3, L(Rm(f)) . 6. As f(X)
cannot be written in a formf(X) = xi g(X\j), m 2 12 by Lemma
3.5. Therefore, the circuit shown in Fig. 8 is minimum.
These lemmas stated above give lower bounds on L(Rm(f))

such that fe G1 1. The next lemma gives an upper bound on
L(Rm(f )) such that fe G1 1 u G2.
Lemma 3.6: In a minimum circuit Rm(f), iffe Gl1 u G2 then

L(Rm(f)) < E f(aj), where B = {0, 1).
ai e B"

Proof: As fe G11 u G2, Rm(f) has the 1-4 form. Similar to
Lemma 3.2,f can be written asf= g1 v 92 V ... V gp. Let the min-
term expansion off be f= mi, v mi2v... v mi,k For any g, E {g 1,
92 , g,p}, there exists mij such that mij c g, and mij ¢ (g I vg2 V
v9g- l vg8 1 v vgp). Otherwise, (g9 V92 v - vggs8i vg,+ 1 V
v gp) n g., which means that the element of the I-0 path whose

line is connected to g9 can be omitted. It is clear that different gs's
correspond to different mi;'s. Therefore k 2 p. Q.E.D.
Example 3.3: Let Rm(f) be a minimum circuit off= x1 x2 v

X2X3VX3XVX1lX2X3. Asfe Gll andf(el)+f(e2)+f= 3,
L(Rm(f)) > 3 by Lemma 3.2. On the other hand, E,a F B f (ai) = 3,
so L(R(f ).) < 3 by Lemma 3.6. Therefore, L(Rm(f )) = 3.
The next two theorems show that some minimum circuits can

be obtained by realizing circuits of fewer variables. These two
theorems are called minimum decomposition theorems.

Theorem 3.1: Iffcan be written in a formf(X) = g(xi xj, X\i, j),
then a minimum circuit for f can be obtained from the minimum
circuit of g(u, X\i, j) as shown in Fig. 9.
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f
x

X2

Fig. & Realization off= xl x2 xl X3 Xi X4 * X2 * X3 'X2 X4 X3 X4.

x minimum circuit

which realizes g(U,X\j)=f(x)

I. Rea og(u,X\i,i) = I

Fig, 9. Realization off(X) =g(x; xj, X\i, jy

Proof: Let Rm(f ) and C,(g) be minimum circuits. By setting
xj = 0 in R(f)1 the element which is connected to xj can be
removed, and the circuit R, l(g) which realizes g(x , X\i, j) can be
obtained. By modifying C4g) as shown in Fig. 9, a circuit Cs+ I(f)
which realizes can be obtained. Since Rm(f ) and C,(g) are min-
imum circuits, s + 1 . m and m - 1 > s. Thus m = s + 1: There-
fore C'+1 is minimum. Q.E.D.

Theorem 3.2: If fcan be written in a formf(X) = .x1g(X\j) such
that g(XV) E G1 1 u G2, then a minimum circuit can be obtained
from the circuit of g(XV) as shown in Fig. 9 by setting xi = 1.

Proof: Note that f can be written as f(X) = (1 xJ)g(XV).
The proof is similar to Theorem 3.1. Q.E.D.
Example 3.4: A function

f = X6 ((X1 vx2)X3 X4 x 5 V1 * X2 * X-3 (X4 V XS))
can be written as f= X6 *g(Xl, X2, X3, U), where g(x1, X2, X3,
U) = (X1 VX2)* X3 * UVK1 .g2 * X-3 * U and u = X4 * Xs. First, re-
alize a minimum circuit R,(g): As g E G11 and g(ei) + g(e2) +
g(e3) + g(e4) = 4, L(R3(g)) . 4. As g cannot be written in a form
g = xi g'(X\i), s . 8. Therefore, the circuit of the inside of the
broken line in Fig. 10 is a minimum circuit. Second, realize a
minimum circuit of f by using R5(g). The circuit in Fig. 10 is
minimum by Theorems 3.1 and 3.2.

IV. CONCLUSION
In this correspondence, lower bounds on the number of the IB

elements of a minimum circuit, and two minimum decomposition
theorems are obtained. The results of this correspondence are
useful for the verification of minimality of a given circuit and for
the realization of minimum circuits.

In the case of three-variable functions, a minimum circuit for
each function was obtained [5], [7]. It is well known that the 256
logic functions of three-variable can be partitioned into 80 equiv-
alence classes. Two functions are equivalent if and only if one can
be obtained from the other by a permutation of the input vari-
ables [9]. Only four of the 80 three-variable functions belong to

x5 %.I f(X

Fig. 10. Realization off= x6 (0%1 V X2)X3 * X4 5X5 V Xi * X2 * X3 (X4 V X5))-

G02: 0, X1 * X2, X1 * X2 * X3, and x1 x2 X3. And minimum cir-
cuits for these functions can be easily obtained. Eight of the 80
three-variable functions belong to Go, u G12. By Lemma 2.2,
minimum circuits for these functions are obtained by the min-
imum circuits for corresponding G1I or G2 functions. And the rest
of the functions belongs to G51 u G2. By using results of this
paper, the minimality of circuits for 42 of the 80 three-variable
functions could be verified. The minimality of the circuits for the
other functions were verified by using the assistance of computers.
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