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Cascade Realization of 3-Input 3-Output Conservative Logic
Circuits

TSUTOMU SASAO, MEMBER, IEEE, AND KOZO KINOSHITA, MEMBER, IEEE

Abstract—A conservative logic element (CLE) is a multiple-
output logic element whose weight of an input vector is equal to that
of the corresponding output vector, and is a generalized model of
magnetic bubble logic elements, fluid logic elements, and so on. This
paper considers the problem of realizing arbitrary 3-input 3-output
conservative logic elements (3-3 CLC’s) by cascade connections of
3-input 3-output CLE’s called “primitives.” It is shown that the
necessary and sufficient number of different primitives to realize
an arbitrary 3-3 CLC is three in the case when the crossovers of
lines are permitted, and four in the case when the crossovers of lines
are not permitted.

Index Terms—Cascade realization, conservative logic element
(CLE), logic primitives, magnetic bubble logic, minimum circuit,
three-valued logic, universality of logic elements.

I. INTRODUCTION

CONSERVATIVE logic element (CLE) is a

multiple-output logic element whose weight of input
vector is equal to that of the corresponding output vector
[1], [6]-[8]. In [2], we have shown that not only magnetic
bubble logic elements [1], [6]-[11], but also fluid logic el-
ements, transfer relays, current mode logic elements
without power sources and so on are all CLE’s. In [3] and
[4], we have considered the problem of universality of
CLE’s in relation to the number of constant-supplying
elements.

In this paper, we consider the problem of realizing ar-
bitrary 3-input 3-output conservative logic circuits (3-3
CLC’s) by cascade connections of 3-input 3-output CLE’s
(3-3 CLEs) called primitives. It is known that there are
729 CLE’s [7], and certain of the CLE’s are more “desir-
able” than others. It is useful to study the method for
realizing any CLE’s by using desirable elements.

R. C. Minnick et al. [6] considered the cascade realiza-
tion of 3-input 3-output magnetic bubble logic circuits:
they chose a set of seven most desirable primitives out of
729 3-3 CLC’s, and then cascaded these seven primitives
in all possible combinations and orientations by using the
assistance of a computer.

Here, we consider the necessary and sufficient number
of different primitives to realize an arbitrary 3-3 CLC by
a cascade connection of primitives.
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II. CONSERVATIVE LOGIC ELEMENTS AND THEIR
DuALITY

In this section, we consider the duality of n-n CLE’s.
This result will be used for the realization of CLC’s in
Section V.

First, we will define the CLE.

Definition 1: An n-input n-output logic element is said
to be a CLE if it satisfies the following condition: for any
input vector

S

a=(apaz-+-,a,) € BLB={0,1}, Y a; = Y
=1 i

? y](a)’
3 Jj=1

where y; denotes the jth output function.

Definition 2: Let the output function of n-input n-
output logic element A be y1,ys, - - - ,¥». The dual element
of A, written A9, is the n-input n-output logic element
whose output functions are y%,y$, - - - .y, where y¢ denotes
the dual function of y;.

Lemma 1: If the n-input n-output logic element A is
conservative, then A4 is also conservative.

Proof: See Appendix.

It is known that there are 3¢ = 729 3-3 CLE’s. These
CLE’s can be classified into 31 equivalence classes under
permutations of the inputs and the outputs [7]. For ex-
ample, the element shown in Fig. 1 belongs the 21st class
[7], which is denoted by #21.

Example 1: The dual element of # 21 shown in Fig. 1 is
#15 shown in Fig. 2.

Definition 3: If A and its dual A¢ belong to the same
equivalence class, then A is said to be self-dual.

Example 2: #24 shown in Fig. 3 is self-dual. By con-
necting the crossover circuit as shown in Fig. 4, we can
realize a circuit which is equivalent to the dual element of
#24.

Definition 4: The dual circuit of R, written R4, is the
circuit which is obtained by replacing every element of R
by its dual element.

By duality, we obtain the following lemma.

Lemma 2: The output functions of R4 are the dual
output functions of R.

Definition 5: The set of logic elements A = {4,A,,
..+ ,A,} is said to have the dual property if A¢ belongs to
Afori=12,---,s.

By Lemma 2, for circuit R, we can obtain the circuit R<.
So if the set of primitives has the dual property, then it is
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Fig. 3. #24 element.
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Fig. 4. Circuit which is equivalent to the dual element of #24.

sufficient to consider only 22 equivalence classes shown
in Table I out of 31 equivalence classes of 3-3 CLC’s.

III. TRANSFORM REPRESENTATION OF 3-INPUT
3-OurruT CLE’S

By the definition of a CLE, the number of “1’s” of an
input vector is equal to that of the corresponding output
vector. In the case of 3-3 CLE, for the input. 0 = (0,0,0), the
output is always 0 = (0,0,0) and for the input 1 = (1,1,1),
the output is always 1 = (1,1,1). For the inputs of weight
1, e; = (1,0,0), e2 = (0,1,0), and e3 = (0,0,1), the outputs are
e; or e, or ez, respectively. For the inputs of weight 2, e,
= (0,1,1), @ = (1,0,1), and e; = (1,1,0), the outputs are €,
or € or €3, respectively.

For the inputs ey, e, es, €1, €3, and €3, let the outputs
be e;;, €s5 €s5 €y, €y, and €y, respectively, where
a1,a2,a3,b1,ba,bs € I3, I3 ={1,2,3}. Thus, the 3-3 CLE 1 can
be represented as

(a1a2a3)
A) p=-2102083)
) . (b1 by b3)’

where a1,a2,a3,b1,b2,b3 € Is.
Expression A) is said to be the transform representation
of a 3-3 CLE.

Example 3: The transform representations of #15,
#21, and #24 are

(223) (123) (231)
(123)°(223)°(132)°

respectively.
Hereafter, we represent 3-3 CLE’s(CLC’s) by transform
representations.
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Lemma 3: If two 3-3 CLE’s u; and us are connected in
a cascade, then 3-3 CLE u; - ug is realized, where

= (a1 aza3) 1y = (c1c2c3)
(b1 ba b3)’ (d1da2d3)’
and gy -y =-01%2 as) - (c1czca)
(b1 b2 b3) - (d1d2d3)

“.” denotes the composition of transformation and
(a1 a2 a3) - (c2¢1¢3) = (Cay Cay Cas)-

Example 4: As

(223) (123) (223)

(123) (223) (223)’
if #15 and #21 are connected in a cascade, then #29 is
realized as shown in Fig. 5.

Lemma 4: Let the transform representation of the ele-
ment A) be u. If

=010 as)
(b1 b2 b3)’

then

o (b1byby)
(a1azas3)’

where u9 denotes the transform representation of A<.
Definition 6: If u; and u belong to the same equivalence
class under permutations of the inputs and the outputs,
then p; and us are said to be equivalent and written u; =
H2.
Lemma 5: Let (t1 t2 t3) be an element of S3 (symmetric
group of degree 3). Here we denote (1 to t3) instead of

123
titats]
a) (a1 asa3) - (t1t2t3) - (a1aza3)
(b1 bab3) (t1tats)- (b1 bgbs)
b) (a102a3) _(a1azas) - (t1 t2 t3)

(b1 babs) (b1 babs)-(t1tats)’

Premultiplication corresponds to the permutation of col-
umns and post-multiplication corresponds to the permu-
tation of values.

Example 5: As (21 3) € S3, we have

(213) (213)-¢213) (123)
(113) (213)-(113) (113)°
(123) (123)-(213) (213)
(223) (223)-(213) (113)°

a)’

by

From a)’ and b)’, we obtain

(123)_@123)
(113) (223)°
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MINIMAL 3-3 CLC’s
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TABLE I (CONTINUED)

Boolean expression 1620

Minimal circuit
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The first column represents the equivalence class of the element.

The second column represents the equivalence class of the dual element.

The third column represents the transform representation of the element .

The fifth column represents the values of the characteristic functions.

— ©1%2" %55 5"
3 Db A = mpmgve ey
—

3 3
Fig. 5. Realization of #29.
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IV. UNIVERSAL SET OF PRIMITIVES

In this section, we consider the sets of primitives which
are able to realize any 3-3 CLC in a cascade connection.

A. Closed set of CLC’s
The set of all the 3-3 CLC’s is denoted by K, that is,

_(aiasas)

K=lu=
{“ (by bs bs)

a,-,b,- € Ig]
i,j =123/

Definition 7: Let M = {uy,us, - - - ,up} be a subset of K.
The minimal set S which satisfies the following conditions
is said to be the set of composed functions, written [M] or

lee, -+ pl: @) M C S, D) piuj € S = pi-pjy wj- i €
S

[1,12, « - - ,up] represents the set of the circuits which
are obtained by cascade connections of u1,uz, - - -, and up.
It is clear that [M] C K by definition. If [M] = K, then M
is said to be a universal set of 3-3 CLC’s.

Next, we define three characteristic functions ¢1, ¢, and
¢. These functions perform an important role in this

paper.

Definition 8:
o1(u) = 8(ay — ay) + 8(az — as) + d(as —ay)
d2(p) = 6(by — ba) + 8(bg — b3) + d(bs — b1) -
Y(u) = 8(a; — by) + d(az — by) + d(az — by),
where

(a1 az ag)
=-—12278 g
# 7 (b1 bs b)

and

0, ifx #0

=1 ix=o.

By Definition 8, it is clear that ¢; (i), ¢2(u), and Y(u) are
invariant under permutations of the inputs and outputs
of the element.

Lemma 6: Let u,uo € K.Fori =1,2
a) ¢i(p1) = ¢i(ue) =0 = di(u1-p2) =0
b) ¢i(u1) =3 = ¢i(u1 - p2) = ¢ilug - p1) = 3
c) ¢ilu) =0 = ¢i(p1 - p2) = 0,8 (u2 - p1) = 0.
d) ¢i(p1) = 0,¢;(u2) = 1 = ¢;(u1 - p2) = ¢ilug 1) = 1.
Proof: See Appendix.

Lemma 7: Let uy,us € K. If Y(u1) = ¥(uz) = 3, then
Ylur - p2) = Ylug - p1) = 3.
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Proof: See Appendix.
Definition 9:

M; = {u|p € K,¢; (1) = 0} (=12
Li={ulp e K,¢;i(w) =3} (i=172)
Ni={ulpe Kyw) =i} (=123).

By Lemmas 6 and 7, Lemmas 8 and 9 are easily proved.
Lemma 81:

[M;] = z,[L]— (=12
M;] = (i=12)
[N3] =
Lemma 9:
M1UMoU Ly =M;UM,U L.
[M; UM; ULy =M UMU L.
M1 U M;] = My U Mo.

Furthermore, we can prove the next lemma.
Lemma 10:

[(No U N3) N\ M1 N M)

Proof: See Appendix.

Now, we can prove that the set of primitives which is
able to realize any CLC contains at least three different
primitives.

Theorem 1: If M is universal, then M contains three
different elements u1, p2, and g3 such that u; € M; N Mo
N Ly,uz e My N\ Mz N Ly, and uze M1 N\ My N\ N1

Proof: By Lemma 9, M; U M, U L, andM1 UMyU

L are closed systems and it is easy to verify that M; N M

NL# ¢andMlﬂMgﬂL2 # ¢. Soif [M] = K,then M

¢ My UMy U Ly)and M ¢ (M; U My U Ly). This

1mp11es the existence of u; € My YMs N\ Liand uo e M 1
N Mz L. .

By Lemma 9, M; \U M is a closed system and it is easy
to verify that M; N\ My = ¢, s0if [M] = K, then M ¢ (M,
U M,). This implies the existence of us € Mi N My, Fur-
thermore, by Lemma 10, (N U N3) N\ M; N M3 is a closed
system and it is easy to verify that M; N\ My Ny = ¢ and
MiNMsNN2=¢,sou3e M{NM2NN.. QED.

The fifth column of Table I denotes the values of ¢;(n),
¢2(n), and Y(u) for each equivalence class. By Table I and
Theorem 1, we obtain the following corollary.

Corollary 1: If M is universal, then M contains three
different elements p1, us, and us such that u, is either #12
or #15 or #16 and u, is either # 20 or #21 or #30, and

psis #24.

B. In the Case When Crossovers of Lines are
Permitted

= (No U N3) N\ M; N M.

Here, we show that any 3-3 CLC can be realized as a
cascade connection of three different primitives if the
crossovers of lines are permitted.

1 M; denotes the complement set of M;, i.e., K—M;.
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As to the decomposition of the transformation, the fol-
lowing lemma is known [12].

Lemma 112: Any transformation T = (¢ to t3) can be
represented as a composition of three different generations
P, C, and D, where P = (213),C = (231),and D =
(113). ,

Lemma 123: Any 3-3 CLC can be realized as a cascade
connection of six different primitives P/I, C/I, D/I, I/P,
1/C, and I/D, where I = (1 2 3).

Proof: Any 3-3 CLC T'1/T can be realized as a cascade
connection of T'1/I and I/T5. By Lemma 11, T;/I can be
realized as a cascade connection of P/I, C/I, and D/I.
Similarly, I/Ts can be realized as a cascade connection of
I/P, I/C, and I/D. Hence, we obtain the lemma. Q.E.D.

Lemma 13: Any 3-3 CLC can be realized as a cascade
connection of three different primitives uj, uo, and us, if
the crossovers of lines are permitted, where

(223) (123)
(123) (223)

mi=_—-(#15), uo= (#21),

(23
24
52 #20)
Proof: As the crossovers of lines are permitted, ele-
ments belonging to the same equivalence class can be re-
garded as the same elements. Note that

and p3 =

1_(23) D_(223)
D (223) (#21), I T (123) (#15),
£=£_ (231)
andP—I (132) (#24).
I/C and C/I can be realized by using two I/P as follows:
I (132 I (132)_1I_C
P (132 P (132 C I’

Thus any 3-3 CLC can be realized as a cascade connec-
tion of three different primitives {# 15, # 21, # 24}.
Q.E.D.
Theorem 2: If the crossovers of lines are permitted, then
any 3-3 CLE can be realized as a cascade of three different
primitives u, ug, and u3, where u; € M, N\ My;N Ms, uo
€ Mi N\ M>N Ly, and p3 € M1 N\ M2 N Ny
Proof: By Corollary 1, u, is either #12 or #15 ot #186,
and ug is either #20 or #21 or #30, and ps3 is #24. By
Lemma 13, any 3-3 CLE can be realized as a cascade con-
nection of three different primitives {# 15, 21,# 24]}.
Therefore, it is sufficient to show that the set of primitives
which contains # 12 or #16 instead of # 15, and/or #20
or #30 instead of #21 has the same ability as
(#1521, 4 24).
#15 can be realized by #12 and # 24 as follows:

2If we regard T as a three-valued one-variable logic function, then it
can be said that any three-valued one-variable logic function is realizable
by the composition of three different primitive three-valued one-variable
logixc functions.
This lemma implies that the method of realization of 3-3 CLC’s is
similar to that of a pair of three-valued one-variable logic functions.
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(223) _ (112) (213) (231) (132)

(123) (213) (213) (132 (132
Similarly, #15 can be realized by #16 and # 24 as fol-
lows:

: (223) (231) (122) (132) (231) (231)

(123) (231) 231) (132) (132) 231)°
By duality, it is easy to observe that # 21 can be realized
by #20 and #24, or by #30 and # 24. Hence, any 3-3

CLC can be realized as a cascade connection of {uy,us,us}.
Q.E.D.

C. In the Case When the Crossovers of Lines are not
Permitted

Here, we show that the necessary and sufficient number
of different primitives to realize an arbitrary 3-3 CLC as
a cascade connection is four, if the crossovers of lines are
not permitted.

Theorem 3: If M is universal, then M contains at least
four elements.

Proof: Let [u1,p, « -« ,l-tp] = K. By Theorem 1, it is
clear that p > 3, and let p; € MiNMsNLyuse M1 N
MzﬂLgandu3e MiNMaN Ny Asp € Miand ps e
Mo, pipj,pujur € Myand pg - wj,pj - po€ Mo (j=1,2,---,p),
by Lemma 6. Therefore if p = 3, then [u3] = M; N M 2.0n
the other hand, M; N M, is isomorphic to S3 X S3 be-
cause

(@1aza3) | (@a1azas) € Ss
(b1 b2b3) | (b1 babs) € S3)

S3 X S3is not a cyclic group, so [ug] = M1 N Ms. Hence p
> 4. Q.E.D.

Next, we show that any 3-3 CLE which belongs to M1 N
M can be realized by a cascade connection of two different
primitives.

Lemma 14 [12]: An arbitrary element of S3 can be rep-
resented as a composition of P = (213) and C =
(231).

Lemma 15: [us,ug] = M1 N Ms, where

(231) 213)

(132) (213)°

Proof: Note that

C P
I

M1ﬂM2={ﬂ=

u3 = nd pg =

Wt =7, (ba-p)? (ua)? =

I
C b
From Lemma 14, we obtain the lemma. Q.E.D.
It should be noted that any crossover is contained in M;
N M.
Theorem 4: {u1,po,us,14} is universal, where
(223) (123) _ (231 an _(213)
123) 223" 132" M 213y

By Theorems 3 and 4, the necessary and sufficient

(ng-pg)? = (u3)® - (ug-p3)? =

"UIN

M1 = y M2 =

number of different primitives to realize an arbitrary 3-3
CLC as a cascade connection is four if the crossover of lines

are not permitted.

Proof: By Theorem 2 and Lemma 15. Q.E.D.

V. MINIMAL 3-INPUT 3-OUTPUT CONSERVATIVE
Logaic CIRCUITS

In this section, we consider the realization of 3-3 CLC’s
with minimum numbers of primitives in the case when
crossovers of the lines are permitted.

As stated in Section II, if the set of primitives have the
dual property, then it is easy to realize the circuit, so we use
{#15,# 21, # 24} as the set of primitives.

As shown in the proof of Theorem 2, the synthesis
problem of the circuit u can be reduced to the problem of
decomposing u into the following transformations:

1) Transformations Which Correspond to the Primi-
tives:

(223) (123) 231)
and

(123)°(223)° (132)°

2) Transformations Which Correspond to the Cross-
overs of Lines:

(182 (321) (213) (231) 312
(132)°(321)°(213)°(231) 3812)°

As the crossovers of lines can be done freely, the de-
composition containing the minimum number of trans-
formations which correspond to the primitives must be
found.

The following example illustrates the method used
here.

Example 6: #10 can be decomposed into two cir-
cuits:

,and

(222)=(222) (123)

(122 (123) (122)° N
So we must decompose g; z; and 8 Z 2; . Note that
(222)=(223).(122)‘ @)
(123) (123) (123)
and
(122) (321) (223) (321). 3)
(123) (321) (123) (321)
Consider the dual of (3),
(123)=(321).(123).(321). @)
(122) (321) (223) (321)
From (1) to (4), we obtain
(222)=(223)'(321).('223).(123).(321). )
(122) (123) (321) (123) (223) (321)

The decomposition of (5) corresponds to the circuit of # 10

‘shown in Table 1. (The End of Example 6.)

The other circuits can be realized in a similar way to
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Example 6. In general, for a 3-3 CL.C, the decomposition
which contains minimum number of primitives is not
unique. In Table I, the circuits which contain minimum
number of #15 and #21 are shown. The necessary and
sufficient number of # 15 and # 21 to realize a circuit can
be obtained by the following theorem.

Theorem 5: When the crossovers of lines are permitted,
any circuit is realized as a cascade connection of three
different primitives {u;,us,u3}. The necessary and sufficient
number of p; are given by \;(u), where p; € M1 N\ M2 N
Ly, uze My N\ Mo Lo, uz € M1 N\ My Nyand N\;(n)
=[%-¢:(W)1G = 1,2).

[a] denotes the minimum integer not less than a.

Proof: If ¢1(u) # 0, i.e., u € M1, then at least one
is necessary because [uo,us3] = M. If ¢1(u) = 3, then at least
two u, is necessary because ¢1(u;) = 1 and by d) of Lemma
6. For uy, the similar argument can be done.

By Table I and the proof of Theorem 2, it is easy to show
the sufficiency. Q.E.D.

Example 7: The minimal circuit of # 10 in Example 6
contains at least two # 15 and one # 21, because

M) = [%{5(2 -2)+62-2)+8(2- 2)}] =2
Ao(p) = [%{6(1 -2)+62-2)+4(2- 1)}] =1

So the circuit shown in Table I is minimal.

VI. CONCLUSION AND COMMENTS

In this paper, we considered the problem to realize 3-3
CLC’s by cascade connections of 3-8 CLE’s called primi-
tives. It is shown that the necessary and sufficient number
of different primitives to realize an arbitrary 3-8 CLC is
three in the case when the crossovers of lines are permitted,
and four in thecase when the crossovers of lines are not
permitted.

APPENDIX

Proof of Lemma 1: As A is conservative, for any input
vector a = (a,az, -+ -,a,) € B",

n n
2 a;= ) yjla). (A1)
i=1 j=1
By the definition of the dual function,
yi(a) = y;(a)

and we have
Tyl@=Y Q-yi@)=n-3 yi@@ (A2
J=1 J=1 j=1

By (A1),

12

Yy@=Y@m=3%0-a)=n-
j=1 i=1 =1

By (A2) and (A3), we have

S a;. (A3)
=1

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-27, NO. 3, MARCH 1978

1

it

n
a; =3 yi(a)
Jj=1
This implies that A9 is also conservative. Q.E.D.
Proof of Lemma 6: Let

_laiaza9) _(ercoey)
7 (brbaby)” P (drdady)

1) If ¢1(u1) = ¢1(u2) =0, then a; # a, az # a3, a3 # ay,
C1 # Cg, Co # c3, and c¢3 # ¢1. Thisimplies (a; a2 a3) € S3
and (¢ c2 ¢3) € S3. S3is closed under the composition, and
we have (a; ag ag) - (¢1 ¢2¢c3) = (Cay Caz Caz) € Ss. This
implies ¢, 7 Cay Cay ¥ Cag aNd Cg3 # Cq,. Similarly,
(c1cac3) - (a1 azas) = (ac, acy acg) € S3. This implies a,
# gy, Goy # ey and acy # ac,. Therefore ¢1(ug » po) =

d1(ug - u1) = 0.
2) If ¢1(u1) = 3, then a; = a2 = a3. And we have

L= (@1a2a3)-(c1¢2¢3) _ (Ca; Cay Cay)
P (bibaby) - (drdads)  (by by bs) - (di dyda)

and

_(c1czes) - (a1aza3) _ (a;a10a1)
(d1dads)- (b1 bgbs) (d1dads)-(bybabs)’

Therefore ¢1(u1 - u2) = dp1(uz - p1) = 3.

3) If ¢1(u1) = 0, thena; = ag, az = as, orag = a;. This
implies ¢g; = Cag Cay = Cag OF Cqz = Cq;, and also implies a,
= Q¢ Ucy = Qcy, OF Acy = Ac,. Therefore ¢1(ug - p2) > 0and
¢1(uz - 1) # 0.

4) If ¢1(u1) = 0, then a; # aq, as > a3, and ag # a;. If
¢1(u2) = 1, then exactly one of the following holds: ¢; = ¢,
Cg =C3,C3 = C1. So ¢1(p,1) =0and ¢1([.L2) =1 implies that
exactly one of the following holds: ¢g; = cgy, Cay = Ca3, Cas
= g, Similarly, exactly one of the following holds: a., =
Qe Acy = ey, Qcg = Qe Therefore ¢1(ug - o) = ¢1(uz - p1)
= 1. For ¢9, similar arguments can be done. Q.E.D.

Proof of Lemma 7: If Y(u1) = ¢(uz) =3, thena; = b;
and ¢; = d;(i = 1,2,3). This implies ¢,; = dp; and a., = bg;(i
= 1,2,3). Therefore Y(uy - u2) = (ug - u1) = 3.

Proof of Lemma 10: By Lemma 8, [N3] = N3, [M;] =
M1, and [M2] = M2. This implies [N3 N M1 N M2] = N3
M M1 N M,. It is easily verified that No N\ M1 N\ M3 = ¢,
N; N\ Nj = ¢ (i # j). Therefore, (No U N1 U N3) N\ M,
N Ms=M; N\ M,.

1) First, we show p,uso e NoNMMiNMa= uj-use
(NoU N3) "My N Ms. Let uy,ue € NoN\ My (N Mo. Itis
clear that (a; as asz) € Ss, (b1 b b3) € S3, (c1c2¢3) € Ss,
and (d; ds d3) € S3. S3is closed under the composition, so
we have (¢q, €q, Ca3) € Ssand (dp, dp, dp;) € S3. Suppose
Cay = dby, Cay 7 by, Cas # db,, We have cq, = dp; and cq,
= dp, As ug € Ny, ¢; # d; (i = 1,2,3). This implies ag = b3
and a3 # bo. Note that as # bs and a3 % bg because u; €
Ny. Therefore, we have as = b; and a3 = b;. But this con-
tradicts (a; a2 as) € Ss. So there is no case such that ¢,, =
dbys Cag # dby, and cqy # dp,.

Similarly, we can show that there is no case such that c,,
# dpy, Cay = dp,, and cq, # dpg, nor the case such that ¢,
# dp,, Cay # dpy, and cg; = dps. Note that No N M1 N M3

M2+ p1
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= ¢, and we have either ¢,; = dp; (i = 1,2,3) or cq; # dp; (i
= 1,2,3). Hence, p1 - s € (No U N3) N\ M1 N Mo

2) Second, we show u; € No N\ M1\ Mg, us e N3\ My
N Ms= pi1-pg, po-p1 € NoN My N M.

Asui e Nog,a; #b; 1=1,2,3). Asus e My, (c1cac3) €
S3. This implies ¢ # ¢9, €2 # €3, and ¢3 # ¢1. So we have
Ca; # Cp; (1 = 1,2,3). Note that ¢; = d; (i = 1,2,3) because
us € N3, and we have c,; # dp,. Hence, u1 - ug € No (N M;
M M.

a; #b;1=123)andc; =d; (i =1,2,3)
implies a.; # bg; (¢ = 1,2,3).

Hence, p2 - u1 € No N M1 N Ms.

3) Lastly, we show uj,us e NsOMi N\ Mo= 1 -us e
N3N\ M N M.

By Lemma 8, [N3] = N3, [M1] = M1, and [M3] = Ms. So
it is clear that 3) holds. From 1), 2), and 3), we obtain the
lemma. Q.E.D.
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