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Cascade Realization of 3-Input 3-Output Conservative Logic
Circuits
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Abstract-A conservative logic element (CLE) is a multiple-
output logic element whose weight of an input vector is equal to that
of the corresponding output vector, and is a generalized model of
magnetic bubble logic elements, fluid logic elements, and so on. This
paper considers the problem of realizing arbitrary 3-input 3-output
conservative logic elements (3-3 CLC's) by cascade connections of
3-input 3-output CLE's called "primitives." It is shown that the
necessary and sufficient number of different primitives to realize
an arbitrary 3-3 CLC is three in the case when the crossovers of
lines are permitted, and four in the case when the crossovers of lines
are not permitted.

Index Terms-Cascade realization, conservative logic element
(CLE), logic primitives, magnetic bubble logic, minimum circuit,
three-valued logic, universality of logic elements.

I. INTRODUCTION

A CONSERVATIVE logic element (CLE) is a
multiple-output logic element whose weight of input

vector is equal to that of the corresponding output vector
[1], [61-[8]. In [2], we have shown that not only magnetic
bubble logic elements [1], [6]-[11], but also fluid logic el-
ements, transfer relays, current mode logic elements
without power sources and so on are all CLE's. In [3] and
[4], we have considered the problem of universality of
CLE's in relation to the number of constant-supplying
elements.

In this paper, we consider the problem of realizing ar-
bitrary 3-input 3-output conservative logic circuits (3-3
CLC's) by cascade connections of 3-input 3-output CLE's
(3-3 CLE's) called primitives. It is known that there are
729 CLE's [7], and certain of the CLE's are more "desir-
able" than others. It is useful to study the method for
realizing any CLE's by using desirable elements.

R. C. Minnick et al. [6] considered the cascade realiza-
tion of 3-input 3-output magnetic bubble logic circuits:
they chose a set of seven most desirable primitives out of
729 3-3 CLC's, and then cascaded these seven primitives
in all possible combinations and orientations by using the
assistance of a computer.

Here, we consider the necessary and sufficient number
of different primitives to realize an arbitrary 3-3 CLC by
a cascade connection of primitives.
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II. CONSERVATIVE LOGIc ELEMENTS AND THEIR
DUALITY

In this section, we consider the duality of n-n CLE's.
This result will be used for the realization of CLC's in
Section V.

First, we will define the CLE.
Definition 1: An n-input n-output logic element is said

to be a CLE if it satisfies the following condition: for any
input vector

n n
a = (al,a2, ... ,an) e Bn, B = 10,1I, E ai = E yj(a),

i=1 j=1

where yj denotes the jth output function.
Definition 2: Let the output function of n-input n-

output logic element A be Y1,Y2,, ,Yn. The dual element
of Al written Ad, is the n-input n-output logic element
whose output functions are y 2, * ,y where yd denotes
the dual function of yi.
Lemma 1: If the n-input n-output logic element A is

conservative, then Ad is also conservative.
Proof: See Appendix.

It is known that there are 36 = 729 3-3 CLE's. These
CLE's can be classified into 31 equivalence classes under
permutations of the inputs and the outputs [7]. For ex-
ample, the element shown in Fig. 1 belongs the 21st class
[7], which is denoted by #21.
Example 1: The dual element of #21 shown in Fig. 1 is

#15 shown in Fig. 2.
Definition 3. If A and its dual Ad belong to the same

equivalence class, then A is said to be self-dual.
Example 2: #24 shown in Fig. 3 is self-dual. By con-

necting the crossover circuit as shown in Fig. 4, we can
realize a circuit which is equivalent to the dual element of
#24.
Definition 4: The dual circuit of R, written Rd, is the

circuit which is obtained by replacing every element ofR
by its dual element.
By duality, we obtain the following lemma.
Lemma 2: The output functions of Rd are the dual

output functions of R.
Definition 5: The set of logic elements A = $A1,42,

*..* *Ais said to have the dual property if Ad belongs to
Afori=1,2,-..,s.
By Lemma 2, for circuit R, we can obtain the circuit Rd.

So if the set of primitives has the dual property, then it is
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X1 -_Yl=rl Y2X3
x2 A21I- 2x2=xj vx3)

x3 -Y33
Fig. 1. #21 element.

X1 y-y1=x1 (x2vx3)

X2 1'5 -Y2=x2vxx13
x3 y3--23
Fig. 2. #15 element.

X1 --r yy=x1x2vx2x3

x2 24 Y _l?xX
x3 Y3=2
Fig. 3. #24 element.

2 1 2 Gx3
x3 42

Fig. 4. Circuit which is equivalent to-the dual element of #24.

sufficient to consider only 22 equivalence classes shown
in Table I out of 31 equivalence classes of 3-3 CLC's.

III. TRANSFORM REPRESENTATION OF 3-INPUT
3-OUTPUT CLE'S

By the definition of a CLE, the number of "l's" of an
input vector is equal to that of the corresponding output
vector. In the case of 3-3 CLE, for the input 0 = (0,0,0), the
output is always 0 = (0,0,0) and for the input 1 = (1,1,1),

the output is always 1 = (1,1,1). For the inputs of weight
1, el = (1,0,0), e2 = (0,1,0), and e3 = (0,0,1), the outputs are

e1 or e2 or e3, respectively. For the inputs of weight 2, -e
= (0,1,1), e2 = (1,0,1), and C3 = (1,1,0), the outputs are e
or e2 or e3, respectively.
For the inputs el, e2, e3, e1, C2, and b3, let the outputs

be eai, ea2, ea3, ebi, eb2, and bb3, respectively, where
al,a2,a3,bl,b2,b3 E I3, I3 = 11,2,3}. Thus, the 3-3 CLE ,u can
be represented as

A)
(a, a2 a3)

(b, b2 b3)

where al,a2,a3,b1,b2,b3 E I3.
Expression A) is said to be the transform representation

of a 3-3 CLE.

Example 3: The transform representations of #15,
#21, and #24 are

(223) (123) (231)
(123)'(223)'(132)'

respectively.
Hereafter, we represent 3-3 CLE's(CLC's) by transform

representations.

Lemma 3: If two 3-3 CLE's ,ul and ,2 are connected in
a cascade, then 3-3 CLE ul - /12 is realized, where

(a, a2 a3)
(b, b2 b3)'

(C1 C2 C3)

(di d2d3)'
(a, a2 a3) - (cl C2 C3)and1 2=(bi b2 b3) - (di d2 d3)

* denotes the composition of transformation and
(ai a2 a3) - (C2 Cl C3) = (Cal Ca2 Ca3).

Example 4: As

(223) (123) (223)
(123) (223) (223)'

if #15 and #21 are connected in a cascade, then #29 is
realized as shown in Fig. 5.
Lemma 4: Let the transform representation of the ele-

ment A) be ,u. If

(a, a2 a3)
(bi b2 b3)

then

d (bi b2 b3)
(a, a2 a3)

where /d denotes the transform representation of Ad.
Definition 6: If 11 and /2 belong to the same equivalence

class under permutations of the inputs and the outputs,
then /11 and /2 are said to be equivalent and written g1-
/2-
Lemma 5: Let (t1 t2 t3) be an element of S3 (symmetric

group of degree 3). Here we denote (t1 t2 t3) instead of

1l 2 38
vtl t2 t3}

(a1 a2 a3) (t1 t2 t3) (a1 a2 a3)a) (b, b2 b3) (tl t2 t3) * (bi b2 b3)

(ai a2 a3) - (a, a2 a3) - (t1 t2 t3)
b (b1 b2 b3) (b1 b2 b3) - (t1 t2 t3)

Premultiplication corresponds to the permutation of col-
umns and post-multiplication corresponds to the permu-
tation of values.

Example 5: As (2 1 3) E S3, we have

(213) (213).(213) (123)
a) (113) (213).(113) (113)'

(123) (123).(213) (213)
(223) (223) - (213) (113)

From a)' and b)', we obtain
(123) (123)
(1 1 3) - (2 2 3)-
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TABLE I
MINIMAL 3-3 CLC's

A Ad v Boolean expression +102+ Minimal circuit

(33__ 1X" 1-5 15 21 -11 L (2 2 2) 330 I
x1_xix2V4

2 3 (1 3 3)
(2 2 2)

18(2 2

x1VX2x3
r1x2 3

x2vx3
x (x

x3x1 2

x1x2'2?3'elr

1 3 0

3 1 1

123
(233 X2 x1X,-32123 2 2

X2V*,x 3
__3 __1) 23 __ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _

7 "112) X3V1:x3 1 2 11016 14 T-21-2 1 3l
1 1

2
x2

8;8 11 3) 2X1X 111
x

x (x vx)12 3
9 19 (222 ) x2v(x1ex3) 1005(1 2 3(V 2) 31 E lII 3

(x VX )

(22 X1 2X

I10 283
2

(xvx )vx (x
(1 22) 1 2 3 1 2 3 3 12

(1 12) 2VX1X3

c3(x1VX2)

yrx
(112

C

1 2
12

(x vx)

152..(2 2 3) 1 23 1025 1(1 23) x2VXlX3 102

122

16~(1 22) 1x 2v(x &,x)
(21 (x vx)0

1 (2 3)
(2 2 3) xxVx-(x Ox) 1F T1,7 17 122 2 33 1 2 uzz4jjz7 Ij.I.-21

Cx vx

(2 12) x VX 1i

xl1
2 23 (1 23) x_ __2_(1 2 3) _________3_

x3
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TABLE I (CONTINUED)

A Ad Boolean expression | 2*| Minimal circuit

x x- v-x 4x-

(2 3 1) I-2 2324-i 24 (1 3)17,f2v,23 0 0 1
3 __

1x2vr2 3x3.rX1
(2 22) 2X

(1 12)x

226(2 23) 1x2v 5(2~x3) 11152
x yr' 3x,,l-
X1X2 2x3'3_ __l_

29 27 (3223) rx2vx2rvz x3x12 2(2 2 3) 1 2Vx 2rX3Vx 1 13

(21 r1x2vx2r3

31231 31) 2" 2.3,X 000
1X3

The first column represents the equivalence class of the element.

The second column represents the equivalence class of the dual el.ement.

The third column represents the transform representation of the element .

The fifth column represents the values of the characteristic functions.

x1 ---X lX222=3V3'x1x
X2 - ]5 = 21 - x X -x2x2 2' 23 x3
x3 x3

Fig. 5. Realization of #29.

IV. UNIVERSAL SET OF PRIMITIVES

In this section, we consider the sets of primitives which
are able to realize any 3-3 CLC in a cascade connection.

A. Closed set of CLC's
The set of all the 3-3 CLC's is denoted by K, that is,

K--(a,la2a) jai,bj 131
K (b b2 b3) i j= 1,2,31

Definition 7: LetM = {i1,412, * * * ,u be a subset of K.
The minimal set S which satisfies the following conditions
is said to be the set of composed functions, written [Ml or
[AbAZ2i ..

'p]: a) M C S, b) ui,Aj E S ==, i - j, ij - i is
S.

[11,12, *-- ,Ip1 represents the set of the circuits which
are obtained by cascade connections of AbA2, ... , and up.
It is clear that [Ml C K by definition. If [M] = K, thenM
is said to be a universal set of 3-3 CLC's.

Next, we define three characteristic functions 41, 02, and
il. These functions perform an important role in this
paper.

Definition 8:

01(,) = b(al - a2) + b(a2 - a3) + b(a3- a,)

+2(R) = (b - b2)+ 6(b2-b3)--+ S(b3 -b1)

i(A) = b(al - b1) + b(a2- b2) + b(a3 - b3),
where

(a, a2 a3)
(b, b2 b3)

and

O(X)= lo ifx 0
if x = 0.

By Definition 8, it is clear that 'l(A1), 02&), and A(y&u) are
invariant under permutations of the inputs and outputs
of the element.

Lemma 6: Let 1l, 12 E K. For i = 1,2

a) Oi (11) = Oi (2) = ° ' Xi (Al *1 2) =O

b) q5i(1l) = 3

IC) oi(Al) °l

Xi (ul* 12) =°i(12 *1A) = 3

d) OiOO) 2 Oij(12) = 1 ;i(Al AD2) = Oi (12 - 11) = 1.

Proof: See Appendix.
Lemma 7: Let 111,112 E K. If 1(A1l) = IP(A2) = 3, then

VI( 1- A2) = 1i2* Al) = 3.
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Proof: See Appendix.
Definition 9:

Mi = UItlA E K,qj(4) = 0}
Li = lf/iA E K,qi(() = 3}

Ni = fulI E K,4(z) = i}

(i = 1,2)
(i = 1,2)

(i = 1,2,3).
By Lemmas 6 and 7, Lemmas 8 and 9 are easily proved.
Lemma 81:

[Mi] = Mi, [Li] = Li (i = 1,2)
[Mi] = Mi (i = 1,2)

[N3] = N3.
Lemma 9:

[M11M2U L1] = M

[Ml U M2 U L2] = Ml

[Ml U M2] = M

U M2 U Li.
U M2 U L2.
U M2.

Furthermore, we can prove the next lemma.
Lemma 10:

[(No U N3) n M1 n M2] = (No U N3) n M1 n M2.

Proof: See Appendix.
Now, we can prove that the set of primitives which is

able to realize any CLC contains at least three different
primitives.
Theorem 1: If M is universal, then M contains three

different elements l, 1.2, and 13 such that EAm1 n M2
n L1,A2 E m1 n M2 n L2, and /3 C M1 n M2 A N1.

Proof: By Lemma 9, M1 U M2 U L1 and M1 U M2 U
L2are closed systems and it is easy to verify that M1 n M2
n L1 s 0 and M1 n M2 n L2 s q. So if [Ml = K, thenM
4 (M1 U M2 U L1) and M X (M1 U M2 U L2). This
implies the existence of Al E M1 n M2 n L1 and A2 e M1
nm2AL2.
By Lemma 9, M1 U M2 is a closed system and it is easy

to verify that m1 n M2 z q, so if [Ml = K, thenM X (Ml
U M2). This implies the existence of 3 Em1 n M2. Fur-
thermore, by Lemma 10, (NoU N3) n 1 A AM2 is a closed
system and it is easy to verify thatMl Am2 n N1 k and
M1nM2nN2 = 0, sO13 EMAnM2nNL. Q.E.D.
The fifth column of Table I denotes the values of ki(,u),

02(/l), and &(g) for each equivalence class. By Table I and
Theorem 1, we obtain the following corollary.

Corollary 1: IfM is universal, then M contains three
different elements gAl, 1.2, nd 3 such that A1 is either #12
or #15 or #16 andM2 is either #20 or #21 or #30, and
A3 is #24.

B. In the Case When Crossovers of Lines are
Permitted

Here, we show that any 3-3 CLC can be realized as a
cascade connection of three different primitives if the
crossovers of lines are permitted.

I Mi denotes the complement set of Mi, i.e., K-Mi.

As to the decomposition of the transformation, the fol-
lowing lemma is known [12].
Lemma 112: Any transformation T = (tl t2 t3) can be

represented as a composition of three different generations
P, C, and D, where P = (2 1 3), C = (2 3 1), and-D =
(1 1 3).
Lemma 123: Any 3-3 CLC can be realized as a cascade

connection of six different primitives P/I, C/I, DII, IIP,
I/C, and IID, where I = (1 2 3).

Proof: Any 3-3 CLC T1/T2 can be realized as a cascade
connection of T1/I and I/T2. By Lemma 11, T1/I can be
realized as a cascade connection of P/I, CII, and DII.
Similarly, I/T2 can be realized as a cascade connection of
IIP, I/C, and IID. Hence, we obtain the lemma. Q.E.D.
Lemma 13: Any 3-3 CLC can be realized as a cascade

connection of three different primitives ALl, /2, and 3, if
the crossovers of lines are permitted, where

(223) (1 23)/xl (1 2 3) (#15), 2= 3)(#21)
(2 31)and, 3 = (# 24).
(1 32)

Proof: As the crossovers of lines are permitted, ele-
ments belonging to the same equivalence class can be re-
garded as the same elements. Note that

I _(123) (# 21) D - (2 2 3) (# 15)

IIC and CII can be realized by using two IIP as follows:
I (132) I (132) I C
P (132) P (132) C I

Thus any 3-3 CLC can be realized as a cascade connec-
tion of three different primitives #15,# 21,# 24}.

Q.E.D.
Theorem 2: If the crossovers of lines are permitted, then

any 3-3 CLE can be realized as a cascade of three different
primitives ,gl, /i2, and /3, where Al e M1 A M2 n M3, /2
E M1 n M2 n L2, and ,3 & M1A M2 N1.

Proof: By Corollary 1, ,tl is either # 12 or # 15 or # 16,
and A2 is either #20 or #21 or #30, and /3 iS #24. By
Lemma 13, any 3-3 CLE can be realized as a cascade con-
nection of three different primitives 1#15,#21,#24}.
Therefore, it is sufficient to show that the set of primitives
which contains #12 or #16 instead of #15, and/or #20
or #30 instead of #21 has the same ability as
{#15,#21,#24}.
# 15 can be realized by # 12 and # 24 as follows:

2 If we regard T as a three-valued one-variable logic function, then it
can be said that any three-valued one-variable logic function is realizable
by the composition of three different primitive three-valued one-variable
logic functions.

3This lemma implies that the method of realization of 3-3 CLC's is
similar to that of a pair of three-valued one-variable logic functions.
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(223) (112) (21.3) (231) (132)
(123) (213) (21 3) (132) (132)

Similarly, #15 can be realized by #16 and #24 as fol-
lows:

(223) (231) (122) (132) (231) (231)
(1 2 3) (231) (231) (132) (132) (231)e
By duality, it is easy to observe that #21 can be realized

by #20 and #24, or by #30 and #24. Hence, any 3-3
CLC can be realized as a cascade connection of I/1,02,,3}-

Q.E.D.

C. In the Case When the Crossovers of Lines are not
Permitted

Here, we show that the necessary and sufficient number
of different primitives to realize an arbitrary 3-3 CLC as
a cascade connection is four, if the crossovers of lines are
not permitted.
Theorem 3: IfM is universal, thenM contains at least

four elements.
Proof: Let [l,,42, ... 41p]_= K. By Theorem 1, it is

clearthatp > 3,andlet1A EMlm nM2nL,A2eM1n
M2 L2 and /A3 E M1 n M2 N1. Asy & M1 and I2 E
M2, Ilgj,gjMI e M1 andg42 - Mj,j - A2 E M2 (j = 1,2, - .,p),
by Lemma 6. Therefore ifp = 3, then [/3] = M1 n M2- On
the other hand, M1 n M2 is isomorphic to S3 X S3 be-
cause

M1r~M2= j (a, a2 a3) (a, a2 a3) e831
1 (b, b2 b3) (b, b2 b3) e s3

S3 X S3 is not a cyclic group, so [A3] F Mi n M2. Hence p
> 4. Q.E.D.

Next, we show that any 3-3 CLE which belongs toM1 n
M2 can be realized by a cascade connection of two different
primitives.
Lemma 14 [12]: An arbitrary element of S3 can be rep-

resented as a composition of P = (2 1 3) and C =
(231).
Lemma 15: [A3,p4] = m nM2, where

(231) (213)
3= (132) (213)

Proof: Note that

()4 = I(C )3 (3)2 =p
IA3' I3

(y )2 = R)3 . y )2=I(4-A3 C (3 (4 A P

From Lemma 14, we obtain the lemma. Q.E.D.
It should be noted that any crossover is contained inMl

nM2.
Theorem 4: t1A,2,I3,I141 is universal, where

(223) (123) (231) (213)
(123) "' (223) "' (132)' (213)

-

By Theorems 3 and 4, the necessary and sufficient

number of different primitives to realize an arbitrary 3-3
CLC as a cascade connection is four if the crossover of lines
are not permitted.

Proof: By Theorem 2 and Lemma 15. Q.E.D.

V. MINIMAL 3-INPUT 3-OUTPUT CONSERVATIVE
LOGIC CIRCUITS

In this section, we consider the realization of 3-3 CLC's
with minimum numbers of primitives in the case when
crossovers of the lines are permitted.
As stated in Section II, if the set of primitives have the

dual property, then it is easy to realize the circuit, so we use
I# 15,# 21,# 241 as the set of primitives.
As shown in the proof of Theorem 2, the synthesis

problem of the circuit ,u can be reduced to the problem of
decomposing ,u into the following transformations:

1) Transformations Which Correspond to the Primi-
tives:

(223) (123) (231)'-and
(123) '(223)' (132)

2) Transformations Which Correspond to the Cross-
overs of Lines:

(132) (321) (213) (231) (312)
(132) '(321) '(213) '(231)' (312)

As the crossovers of lines can be done freely, the de-
composition containing the minimum number of trans-
formations which correspond to the primitives must be
found.
The following example illustrates the method used

here.
Example 6: #10 can be decomposed into two cir-

cuits:

(222) (222) (123)
(122) (123) (122)

(2 22) (1 23)
So we must decompose and (2. Note that

(1 23) (1 22)
(222) (223) (122)
(123) (123) (123)

and
(122) (321) (223) (321)
(123) (321) (123) (321)

Consider the dual of (3),
(123) (321) (123) (321)
(122) (321) (223) (321)

From (1) to (4), we obtain

(222) (223) (321) (223) (123) (321)
(1 2 2) (1 2 3) (3 2 1) (1 2 3) (2 2 3) (3 2 1)

(1)

(2)

(3)

(4)

(5)

The decomposition of (5) corresponds to the circuit of # 10
shown in Table I.- (The End of Example 6.)
The other circuits can be realized in a similar way to
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Example 6. In general, for a 3-3 CLC, the decomposition
which contains minimum number of primitives is not
unique. In Table I, the circuits which contain minimum
number of #15 and #21 are shown. The necessary and
sufficient number of #15 and # 21 to realize a circuit can
be obtained by the following theorem.
Theorem 5: When the crossovers of lines are permitted,

any circuit is realized as a cascade connection of three
different primitives 1141,112,A31. The necessary and sufficient
number of gi are given by Xi (A), where til & M1 n M2 n
L1, 1.2 e M1 n M2 n L2, U3 C m M2 n N1 and Xi(A)
= -* i(Afl(i = 1,2).

ra] denotes the minimum integer not less than a.
Proof: If (l(A') - 0, i.e., ,i & M1, then at least one Al

is necessary because [112,AL3I = M1. If 01(1g) = 3, then at least
two 1ul is necessary because ol(A1l) = 1 and by d) ofLemma
6. For 12, the similar argument can be done.
By Table I and the proof of Theorem 2, it is easy to show

the sufficiency. Q.E.D.
Example 7: The minimal circuit of # 10 in Example 6

contains at least two # 15 and one # 21, because

MOz)= [p6(2- 2) + 6(2 -2) + 6(2-2)IJ = 2

X2(A)= 2(1 - 2) + 6(2 -2) + 6(2 - 1) = 1.

So the circuit shown in Table I is minimal.

VI. CONCLUSION AND COMMENTS

In this paper, we considered the problem to realize 3-3
CLC's by cascade connections of 3-3 CLE's called primi-
tives. It is shown that the necessary and sufficient number
of different primitives to realize an arbitrary 3-3 CLC is
three in the case when the crossovers of lines are permitted,
and four in thecase when the crossovers of lines are not
permitted.

APPENDIX

Proof ofLemma 1: As A is conservative, for any input
vector a = (ab,a2,Z--,an) e Bn,

n n

E ai = , yj(a). (Al)
i=1 j=1

By the definition of the dual function,

yi(a) = yj00
and we have
nn n

E y4(a) = (,(-yjOW = n- yj(ai) (A2)
j=1 j=1 j=l

By (Al),
n n n n

- yj(A) = E di = E (1 -ai) =- n- E ai. (A3)
j=i i=l i=l i=l

By (A2) and (A3), we have

n n
E ai = E yd(a).
i=1 j=1

This implies that Ad is also conservative.
Proof ofLemma 6: Let

(a, a2 a3)

(b, b2 b3)

Q.E.D.

(Ci C2 C3)

(di did3)
1) If 01(111) = O1(12) = 0, then a1 $ a2, a2 P- a3, a3 3Zx aL,

C1 $£ C2, C2 $£ C3, and C3 s£ c1. This implies (a1 a2 a3) E S3
and (C1 C2 C3) e S3. S3 is closed under the composition, and
we have (ai a2 a3) * (cl C2 C3) = (Cal Ca2 ca3) E S3. This
implies Cal ` Ca2, Ca2 $ Ca3, and Ca3 $ Cai. Similarly,
(C1 C2 C3) * (a, a2 a3) = (ac1 aC2 ac3) e S3. This implies ac1
$ ac2, aC2 ac3, and ac3 - acl. Therefore (1(11 *112) =
201(I2-1) = 3a

2) If 01(,ul) = 3, then a, = a2 = a3. And we have
(f ,. 'r IWl4 U2__J ' W1 V2 -3 WUal Val Val

11~112 =(bi b2 b3) * (di d2 d3) (bi b2 b3) - (di d2 d3)
and

(ClC2 c3) - (a, a2a3) (a, ai al)
(di d2 d3) - (b1 b2 b3) (di d2 d3) - (b1 b2 b3)

Therefore 01(Ali 112) = A1(12 - A1) = 3.
3) If 11(11l) 0O, then a, = a2, a2 = a3, or a3 = a,. This

implies Cal = Ca2, Ca2 = Ca3, or Ca3 = Cal, and also implies a,,
= aC2, aC2 = ac2, or ac3 = ac1. Therefore (1(11i * jA2) $6 0 and
1)1(112 *1A) s 0.

4) If ol(A(l) = 0, then a, S a2, a2 S a3, and a3 S a,. If
(Al1(A2) = 1, then exactly one of the following holds: cl =C2,
C2 = C3, C3 = C1. So O1l(Gl) = 0 and 1(112) = 1 implies that
exactly one of the following holds: Cal = Ca2, Ca2 = Ca3, Ca3
= Ca . Similarly, exactly one of the following holds: ac1 =
aC2, aC2 = ac3, ac3 = acl. Therefore 1)1(Al- 112) = 1(1A2 - 1A)
= 1. For O2, similar arguments can be done. Q.E.D.

Proof of Lemma 7: If 41(A1l) = V(112) = 3, then ai = b
and ci = di(i = 1,2,3). This implies Cai = dbi and ac, = bd,(i
= 1,2,3). Therefore q,(1 - 2) = (12 *-1) = 3.

Proof ofLemma 10: By Lemma 8, [N3] = N3, [M1] =
M1, and [M2] = M2. This implies [N3 n M1 A M2] = N3
A M1 A M2. It is easily verified that N2 n M1 A M2 = 0,
Ni A Nj = 1 (i S j). Therefore, (No U N1 U N3) n M1
n M2 = M1 n M2.

1) First, we show l,112 CNonMnA M2=*1l -112 E
(NoU N3) n M1 n M2. Let 111,2 & No n M1 A M2. It is
clear that (a, a2 a3) & S3, (b1 b2 b3) & S3, (C1 C2 C3) E S3,
and (di d2 d3) e S3. S3 is closed under the composition, so
we have (Cal Ca2 Ca3) E S3 and (dbl db2 db3) E S3. Suppose
Cal = dbl, Ca2 S db2, Ca3 $ db3, we have Ca2 = db3 and Ca3
= db2. As112 E No, ci 5 di (i = 1,2,3). This implies a2 $ b3
and a3 $ b2. Note that a2 $ b2 and a3 b3 becauseAl e
No. Therefore, we have a2 = b1 and a3 = b1. But this con-
tradicts (a1 a2 a3) e S3. So there is no case such that Cal =
db1, Ca2 $ db2, and Ca3 $ db3.

Similarly, we can show that there is no case such that Cal
$ db1, Ca2 = db2, and Ca3 S db3, nor the case such that Cai
$ db1, Ca22 db2, and Ca3 = db3. Note thatN2 n M1 A M2
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= X, and we have either cai = dbi (i = 1,2,3) or cai # dbi (i
= 1,2,3). Hence, Al $2 6 (NoU N3) n M1 n M2.

2) Second, we show ,1ENo n M1n M2,142 S N3fnM
nM2 Ul-2,2-l e NonM ln M2.
As Al E No, aif bi (i = 1,2,3). As A2 6 Ml, (cl C2 c3) 6

S3. This implies c1 C2, C2 C3, and c3 cl. So we have
Caj Clbi (i = 1,2,3). Note that ci = di (i = 1,2,3) because
$2 e N3, and we have Caj # db1. Hence, lAl $2 e No n M1

n M2.
ai 5# bi (i = 1,2,3) and ci = di (i = 1,2,3)

implies ac, 0 bdi (i = 1,2,3).

Hence, $2 -A E No n M1 n M2.

3) Lastly, we show $1,926 N3fnM1,nM2 -11-2I
N3fnM1,nM2.
By Lemma 8, [N3] = N3, [M1] = M1, and [M2] = M2. So

it is clear that 3) holds. From 1), 2), and 3), we obtain the
lemma. Q.E.D.
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