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Abstract: This paper presents an algorithm to generate Walsh functions in four different orderings:
Hadamard, Harmuth, Paley and strict sequency. By the analysis of the properties and mutual
relations among these four orderings, the authors found a unified approach to generate any of the
orderings from the primary set of Rademacher functions. By using these properties, the authors
developed a programmable Walsh function generator for 64 outputs by both field programmable
gate arrays and lookup table cascades to estimate the amount of hardware and performance. Such a
programmable Walsh function generator can be used in VLSI testing, CDMA, pattern recognition,
as well as image and signal processing.

1 Introduction

Walsh transforms are orthogonal, normal and complete
[1–14]. They are important spectral representations of
logic functions as the spectral Walsh domain with its
global information provides much deeper insight into the
logical structure of combinatorial networks than logic
domain [1, 3, 6–9, 11, 12]. Spectral representation based
on the Walsh transforms have been used in the
classification of logic functions, functional decompo-
sitions, logic synthesis, multiplexer synthesis, prime
implicant extraction, threshold logic synthesis, analysis
of logic complexity, analysis of balanced functions,
detection of symmetries, linearisation of decision dia-
grams, state assignment, cascade realisations, testing, and
technology mapping [1, 3, 7–9, 11, 12, 15–24].
The renewed interest in applications of spectral methods

in VLSI circuits is caused by their excellent design for
testability and the recent development of efficient methods
to operate on spectra of logic functions directly from
reduced representations such as arrays of disjoint cubes or
decision diagrams (DDs) [9, 11, 12, 17, 18, 20–22, 24–27].
VLSI testing based on signatures, that are, the correlations
between output functions and test vectors, use the Walsh
spectral coefficients [3, 6, 7, 11, 18–20].
In the applications of the Walsh transform to CDMA,

VLSI testing, cryptography, and digital signal and image
processing, the fastest approach is the hardware implemen-
tation [1–8, 10, 13, 14, 18–20, 28–34]. The Walsh
functions of order 64 are extensively used in CDMA

systems [31], and when applied to digital signal and image
processing and pattern recognition, the manipulation of
multidimensional signals involves operations on a large
number of data values [1–8, 10, 13, 14, 32–34]. Since
such a process generally involves high computational costs
and substantial processing time, many attempts have been
made to find efficient computation methods. One of them
is to speed-up the data computation by using dedicated
hardware.

Many different definitions for Walsh functions are known
and used for various applications. They include: Walsh
functions in strict sequency ordering related to sal and cal
symmetries; Walsh functions in dyadic Paley ordering
known also as Gray code ordered functions; Walsh
functions in natural Hadamard ordering; Walsh functions
in X-ordering; andWalsh functions in reverse Gray ordering
[1–8, 11–13, 20, 24, 35]. Relationships between different
orderings of Walsh functions have been investigated [1–8,
11–14, 24, 29, 31, 35–37].

Various Walsh function generators exist that use different
methods [2, 3, 6, 31]. The sequence generators having the
widest applicability are those generating a set of Walsh
functions, although in some cases these functions are
obtained by first generating Rademacher functions. Ideally,
the generated functions should be orthogonal to each other
and some designs are better in achieving this than others.
Also the known generators operate either on the values þ1
and�1 or these values are converted to 0 and 1 accordingly.
For the second case, the Walsh orderings form a group
under modulo 2 addition and such generators can be easily
implemented using multiplicative EXOR gates. Most
generators yield just one of many possible Walsh functions
at a time. A different type of generator is required if one
wants to produce several Walsh functions at the same
time that come close to the ideal of mathematical
orthogonality, and for example Besslich built such a
generator for 16 Walsh functions with the minimum,
orthogonality error [3, 6]. It should be noticed that all the
generators discussed in [2, 3, 6, 31] are built just for one
Walsh ordering or one Walsh function only.

In this paper, we show a unified algorithm to generate
Walsh functions for four different orderings: Hadamard,
Harmuth, Paley and strict sequency. It is an extension of
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our previous article [29] where we have shown the method
of the Walsh function generator of order 64 only for one
Walsh ordering using lookup table cascades. Here, we
modified algorithms presented in [2, 3, 31] to compute
Walsh functions in strict sequency ordering directly from
the primary set of Rademacher functions, and to compute
the Walsh-Hadamard as well as Walsh-Paley functions
from strict sequency ordering, as well as presented a new
algorithm to generate Harmuth functions from strict
sequency ordering. Due to the fact that the Walsh
functions in strict sequency ordering can be derived
directly from the primary set of Rademacher functions, all
other four orderings can also be generated directly from it
too. Also the algorithm proposed here generates Walsh
functions in strict sequency ordering directly from the
primary set of Rademacher functions, and not from Walsh
functions in Rademacher ordering as shown in [7]. Note
that the ith Rademacher function in this algorithm
corresponds to ði� 1Þth Rademacher function in [1–8,
10–14, 24, 31]. In the new algorithm for all four Walsh
functions orderings, the original 1’s are kept, but �1’s are
replaced by 0, and all the Walsh functions are generated
in the complete interval between 0 and 1 rather than
between � 1

2
and 1

2
as shown in [6]. In view of the above

adjustments, our Walsh functions in strict sequency
ordering correspond directly to the right half of Harmuth
sequency functions and the whole Harmuth functions, but
in the interval 0 to 1 are also generated by the algorithm.
After the changing of original symbols the basic proper-
ties like a modulo 2 addition of two Walsh functions
yields another Walsh function hold for all our Walsh
functions. In addition, based on the known relations
between Walsh, Paley and Hadamard orderings [1–8,
11–14, 24, 31], we will show a design method for a
programmable Walsh function generator that produces any
of four possible orderings. Our programmable Walsh
function generator is useful for VLSI testing and other
applications, especially for the IS-95 CDMA system
where Walsh functions of order 64 are extensively used
[1–8, 10–14, 18, 20, 31–34].

Since generation of Walsh functions involves consider-
able computational cost and substantial processing time,
many attempts have been made to find efficient compu-
tation methods. One of them is to speedup the computation
by hardware, such as field programmable gate arrays
(FPGAs) widely used in digital signal processing (DSP)
[28, 32, 33]. Recently, lookup table (LUT) cascades have
been used for realisations of logic functions due to their
short design time, and easy implementation [38–40].
Since the interconnections in a cascade are limited only to
the adjacent cells, the area and the delay for interconnec-
tions are very small. Thus LUT cascades are suitable for
VLSI implementation. In this paper, we implemented a
64-output programmable Walsh function generator that
produces four different sequences using both an FPGA and
LUT cascades.

2 Basic properties and definitions of Walsh
transform

Let f(x) denote a completely specified Boolean function
over a set of n input binary variables X ¼ ðxn; xn�1; . . . ;
x2; x1Þ; where xi 2 f0; 1g and 1 � i � n: The truth vector
of f and the encoded values of f are treated as column
vectors ~ff and ~FF; respectively. The Walsh spectra S and R
of an n-variable Boolean function f are alternative
canonical representations of f. In the S-encoding, the

original elements of ~ff confined to {0, 1} are mapped to
f1;�1g of ~FF; where logic value ‘0’ is denoted by 1,
and logic value ‘1’ is denoted by �1: In the R-encoding,
the original elements of {0, 1} are mapped to {0, 1} of
~FF; where logic value ‘0’ is denoted by 0, and logic value
‘1’ is denoted by 1. In the following, we will show the
definitions and properties of the spectrum for n-variable
completely specified Boolean functions for the five well-
known Walsh-type transforms matrices.

Definition 2.1: The Walsh-Rademacher spectrum ~SS of f(x)

is a column vector given by, ~SS ¼ WRðnÞ~FF where ~SS ¼
½sf; s0; s1; s2; . . . ; sn�1; s01; s02; . . . ; s012���n�1�T ; where T
denotes the transpose operator. sI are the spectral
coefficients in Rademacher ordering, and I is the index
of the coefficient, and WR(n) is the Walsh-Rademacher
matrix of order n.

Similar to definition 2.1, other Walsh orderings can be
defined. The only differences among them are various
reorderings of their rows in the matrices as well as the
sign of rows in the matrices. The five matrices of order
three for the Walsh orderings used in this paper are
given below. In this article we compute Walsh functions
in strict sequency ordering directly from the primary set
of Rademacher functions and we generate the Hadamard,
Paley and Harmuth orderings directly from strict
sequency ordering. More explanation about our unified
algorithm together with an example are given in the next
Section. We also show the properties of their matrices. In
definitions 2.2–2.6, we introduce five Walsh matrices.
For each matrix, we can define corresponding functions.
In definition 2.2, f~RR0;~RR1;~RR2g is the primary set of
Rademacher functions for n ¼ 3:

Definition 2.2: The Walsh-Rademacher matrix of order
three is given by

WRð3Þ ¼

1 1 1 1 1 1 1 1

1 1 1 1 �1 �1 �1 �1

1 1 �1 �1 1 1 �1 �1

1 �1 1 �1 1 �1 1 �1

1 1 �1 �1 �1 �1 1 1

1 �1 1 �1 �1 1 �1 1

1 �1 �1 1 1 �1 �1 1

1 �1 �1 1 �1 1 1 �1

2
666666666666664

3
777777777777775

¼

~WW0

~WW1

~WW3

~WW7

~WW2

~WW6

~WW4

~WW5

2
6666666666666664

3
7777777777777775

¼

~11

~RR0

~RR1

~RR2

~RR0 �~RR1

~RR0 �~RR2

~RR1 �~RR2

~RR0 �~RR1 �~RR2

2
6666666666666664

3
7777777777777775

where the symbol ‘�’ denotes bit-wise product among
vectors.

Definition 2.3: The Walsh-Hadamard matrix of order three
is given by
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WHð3Þ ¼

1 1 1 1 1 1 1 1

1 �1 1 �1 1 �1 1 �1

1 1 �1 �1 1 1 �1 �1

1 �1 �1 1 1 �1 �1 1

1 1 1 1 �1 �1 �1 �1

1 �1 1 �1 �1 1 �1 1

1 1 �1 �1 �1 �1 1 1

1 �1 �1 1 �1 1 1 �1

2
66666666664

3
77777777775

¼

~WW0
~WW7
~WW3
~WW4
~WW1
~WW6
~WW2
~WW5

2
66666666664

3
77777777775
¼

~11
~RR2
~RR1

~RR1 �~RR2
~RR0

~RR0 �~RR2
~RR0 �~RR1

~RR0 �~RR1 �~RR2

2
66666666664

3
77777777775

Definition 2.4: The Walsh matrix in strict sequency of
order three is given by

WSð3Þ ¼

1 1 1 1 1 1 1 1

1 1 1 1 �1 �1 �1 �1

1 1 �1 �1 �1 �1 1 1

1 1 �1 �1 1 1 �1 �1

1 �1 �1 1 1 �1 �1 1

1 �1 �1 1 �1 1 1 �1

1 �1 1 �1 �1 1 �1 1

1 �1 1 �1 1 �1 1 �1

2
66666666664

3
77777777775

¼

~WW0
~WW1
~WW2
~WW3
~WW4
~WW5
~WW6
~WW7

2
66666666664

3
77777777775
¼

~11
~RR0

~RR0 �~RR1
~RR1

~RR1 �~RR2
~RR0 �~RR1 �~RR2

~RR0 �~RR2
~RR2

2
66666666664

3
77777777775

Definition 2.5: The Walsh-Paley matrix of order three is
given by

WPð3Þ ¼

1 1 1 1 1 1 1 1

1 1 1 1 �1 �1 �1 �1

1 1 �1 �1 1 1 �1 �1

1 1 �1 �1 �1 �1 1 1

1 �1 1 �1 1 �1 1 �1

1 �1 1 �1 �1 1 �1 1

1 �1 �1 1 1 �1 �1 1

1 �1 �1 1 �1 1 1 �1

2
66666666664

3
77777777775

¼

~WW0
~WW1
~WW3
~WW2
~WW7
~WW6
~WW4
~WW5

2
66666666664

3
77777777775
¼

~11
~RR0
~RR1

~RR0 �~RR1
~RR2

~RR0 �~RR2
~RR1 �~RR2

~RR0 �~RR1 �~RR2

2
66666666664

3
77777777775

Definition 2.6: The Walsh-Harmuth matrix of order three
is given by

WHRð3Þ ¼

1 1 1 1 1 1 1 1

�1 �1 �1 �1 1 1 1 1

�1 �1 1 1 1 1 �1 �1

1 1 �1 �1 1 1 �1 �1

1 �1 �1 1 1 �1 �1 1

�1 1 1 �1 1 �1 �1 1

�1 1 �1 1 1 �1 1 �1

1 �1 1 �1 1 �1 1 �1

2
666666666664

3
777777777775

¼

~WW0

�~WW1

�~WW2

~WW3

~WW4

�~WW5

�~WW6

~WW7

2
666666666664

3
777777777775
¼

~11

�~RR0

�½~RR0 �~RR1�
~RR1

~RR1 �~RR2

�½~RR0 �~RR1 �~RR2�
�½~RR0 �~RR2�

~RR2

2
666666666664

3
777777777775

Definition 2.7: The Walsh functions inside the Walsh-
Rademacher matrix are called Walsh-Rademacher func-
tions. The Walsh functions in other Walsh matrix
orderings are defined in similar ways.

Definition 2.8: In the Walsh-Rademacher matrix WR(n) of
order n, the first row denotes the constant 1 function.
The next n rows denote the primary Rademacher functions.

The next
�
n

2

�
rows denote the products of two primary

Rademacher functions. The next
�
n

3

�
rows denote the

products of three primary Rademacher functions, etc. And,
the last row denotes the product of n primary Rademacher
functions. Any two different primary Rademacher functions
are mutually orthogonal, but the products of the Walsh-
Rademacher functions are not complete.

Property 2.1: The Walsh transform matrix of each
sequence in definitions 2.3–2.6 is orthogonal and
complete; therefore, the S and R spectra contain all the
information of the Boolean function ~ff : Each row depends
on different subset of the primary Rademacher functions.

Property 2.2: The sequency of a Walsh function is
defined as the number of zero crossings in one cycle.
In strict sequency order, each row has one more
crossings between 1’s and �1’s than the row above.

Property 2.3: Only the Walsh-Hadamard matrix in
definition 2.3 has the recursive Kronecker product
structure. Other matrices in definitions 2.2, 2.4–2.6, do
not have this property.

Property 2.4: The Walsh-Rademacher matrix in definition
2.2 and the Walsh-Harmuth matrix in definition 2.6 are
non-symmetric. All other matrices in definitions 2.3, 2.4,
and 2.5 are symmetric, so that, disregarding a scaling
factor, the same matrix can be used for both the forward
and inverse transformations.

Property 2.5: The Walsh functions in strict sequency can be
generated from the primary set of Rademacher functions as
shown in algorithm 3.1. To generate, we use EXOR
operators, add a constant vector and convert indices of the
natural binary code of the Walsh-Rademacher functions into
Gray code sequence (see Tables 3.1 and 3.3).
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Property 2.6: The Walsh-Paley, the Walsh in strict
sequency as well as the Walsh-Hadamard functions are
related as shown in algorithm 3.1 through reversing bit
positions of the indexes, through a conversion between
Gray code and natural binary code, or through combi-
nation of both of these (see Tables 3.1 and 3.2).

Property 2.7: The Walsh matrix in strict sequency is similar
to the Walsh-Harmuth matrix: the only difference between
them is addition of minus signs for the vectors having
two least significant indices ½b1; b0� ¼ ½0; 1� or ½1; 0�
(see Table 3.4). From definitions 2.4 and 2.6, we can
confirm that when the Walsh matrix in strict sequency order
is divided into two: WS ¼ ½WSLEFT : WSRIGHT �; we have the
Walsh-Harmuth matrix as follows: WHR ¼ ½WSRIGHT :
WSLEFT �:

Property 2.8: When the classical matrix multiplication
method is used to generate the spectral coefficients for
different Walsh transforms (different matrices in definitions
2.2–2.6 represent different Walsh functions in different
orderings), the only difference in the result is the ordering of
the spectral coefficients. The coded vector ~FF corresponding
to the original truth vector of a Boolean function ~ff is the
same for all the orderings of theWalsh functions. The values
of the spectral coefficients sI and rI with the same indices
are the same for every ordering of the Walsh transforms.
In the ordering of the Walsh functions in strict sequency,
most of the neighbouring rows are related to each other.
This property applies not only to the neighbouring rows in
the matrix, but also to the groups of neighbouring rows.

3 Algorithm to generate four orderings of Walsh
functions

Based on the properties and definitions in Section 2, we will
present the algorithm to generate four different Walsh
functions where in the Walsh functions the original 1’s are
kept, but �10s’ are replaced by 0. Walsh functions in strict
sequency ordering are directly generated from the primary
Rademacher functions, and the other three orderings are
generated from Walsh functions in strict sequency ordering,
so in general, all of them can be generated from the primary
Rademacher functions Riði ¼ 0; 1; 2; . . . ; n� 1Þ: Fig. 3.1
gives the relations among four Walsh orderings and
transforms of order n, and the algorithm below gives the
details.

Note that in definitions 2.2–2.6, we use the f�1; 1g
coding, while in the algorithm, we will use the {0, 1}
coding. A product of the rows of the matrices described by
definitions 2.2–2.6 corresponds to an EXOR or an EXNOR
of the primary Rademacher functions in the algorithm.

Algorithm 3.1:

1. Let ~BB ¼ ½bn�1; bn�2; . . . ; bi; . . . ; b0� be a binary vector
representing an index of the Walsh function, where 0 � i �
n� 1:
2. Obtain the Gray code ~GG ¼ ½gn�1; gn�2; . . . ; gi; . . . ; g0�
from the natural binary code ~BB ¼ ½bn�1; bn�2; . . . ; bi; . . . ;
b0�; where gi ¼ biþ1 � bi for 0 � i � n� 2; and gn�1 ¼
bn�1: (Table 3.1 shows the relation between the natural
binary code and the Gray code for n ¼ 5; and a similar
Table can be obtained for n>5) [2–4, 6, 31].
3. Generate the Walsh functions in strict sequency ordering

as follows: ~WW~BB ¼~11� �bb0 �
Pn�1

i¼0 �gi~RRi; where ~RRi denotes

the ith Rademacher function, and ~11 is the binary vector

consisting of n 1’s. Note that the element~11�~bb0 disappears
from this equation when ~BB represents an odd number since
�bb0 ¼ 0:
4. To generate the Walsh-Paley functions WP

�!
~GG from the

Walsh functions in strict sequency ordering, perform the
following operations: WP

�!
~GG ¼ ~WW~BB: In this case instead of

using the operations in step 2, we can convert the Gray code
~GG ¼ ½gn�1; gn�2; . . . ; gi; . . . ; g0� to the natural binary code
~BB ¼ ½bn�1; bn�2; . . . ; bi; . . . ; b0� by using Table 3.2 or its
extension for n>5.
5. To generate the Walsh-Hadamard functions WH

��!
~GG from

the Walsh functions in strict sequency ordering, perform
the following operations:WH

��!
~GG ¼ ~WW~BB: In this case, given the

Gray code ~GG ¼ ½gn�1; gn�2; . . . ; gi; . . . ; g0�; first reverse the
order of bits to obtain ~GGr ¼ ½g0; g1; . . . ; gi; . . . ; gn�1�; and
then obtain the natural binary code ~BB ¼ ½bn�1; bn�2; . . . ;
bi; . . . ; b0�; for which we can use Table 3.2 or its extension.
6. To generate Harmuth ordering ~HH~BB from the Walsh
functions in strict sequency ordering, perform the following
operations:

~HH~BB ¼ ~WW~BB if ½b1; b0� ¼ ½0; 0� or ½1; 1�
~HH~BB ¼ 1� ~WW~BB if ½b1; b0� ¼ ½0; 1� or ½1; 0�

Note that the ith Rademacher function in this algorithm
corresponds to ði� 1Þth Rademacher function in algorithms
in [1–8, 11–13, 24, 31]. However, the basic properties such
that a modulo 2 addition of two different Walsh functions
yields another Walsh function holds for all our Walsh
functions, too. Thus we can construct the Walsh functions in
strict sequency ordering as well as in Harmuth ordering by
using the primary Rademacher functions or its extensions. In
the method described in [31], each Walsh ordering is
generated just from one equation. However, we can generate
each Walsh function by either using the set of the primary
Rademacher functions or already generated other Walsh
functions in strict sequency ordering. Tables 3.3 and 3.4
show the four primary Rademacher functions as well as
calculation of the first 16 Walsh functions in sequency and
Harmuth orderings for n ¼ 4 based on our algorithm 3.1.
Note that sometimes we need to add 1 in our unified
algorithm and it is not the case in known algorithms based on
other representations of Walsh functions. For example, in
Table 3.3, to generate the secondWalsh function ~WW2 in strict
sequency ordering, we can use the first two Rademacher
functions. In generating the Walsh functions of higher
dimensions, we have more ways to generate a given Walsh
function from the primary Rademacher functions. Table 3.4
also shows the relation between the Walsh-Harmuth
functions and the Walsh functions in strict sequency
ordering. Note that half of them are exactly the same, and
the another half has opposite signs that is the result of
property 2.7. Since we can generate all fourWalsh orderings,
i.e. Hadamard, Harmuth, Paley and strict sequency, directly
from the primary Rademacher functions, or we can generate
Hadamard, Harmuth and Paley orderings from the Walsh
functions in strict sequency ordering that is obtained from
Rademacher functions, we can build a programmable
function generator with a small amount of hardware.
In example 3.1, we show an application of our method
to generate two selected Walsh functions in strict
sequency, Paley, Hadamard and Harmuth orderings. We
can extend Tables 3.3 and 3.4 for any size of n based on
algorithm 3.1.

Example 3.1: Let us generate two functions in four
Walsh orderings for n ¼ 5 using algorithm 3.1. For the first
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Fig. 3.1 Derivation of four Walsh orderings from primary set of Rademacher functions

Table 3.1: Conversion between natural binary code and
Gray code for n = 5½2; 3; 4; 6; 31�

Natural binary code

~BB ¼ ½b4;b3;b2;b1;b0�

Gray code

~GG ¼ ½g4;g3;g2;g1;g0�

00000 00000

00001 00001

00010 00011

00011 00010

00100 00110

00101 00111

00110 00101

00111 00100

01000 01100

01001 01101

01010 01111

01011 01110

01100 01010

01101 01011

01110 01001

01111 01000

10000 11000

10001 11001

10010 11011

10011 11010

10100 11110

10101 11111

10110 11101

10111 11100

11000 10100

11001 10101

11010 10111

11011 10110

11100 10010

11101 10011

11110 10001

11111 10000

Table 3.2: Conversion between Gray code and natural
binary code for n = 5½2; 3; 4; 6; 31�

Gray code

~GG ¼ ½g4;g3;g2;g1;g0�

Natural binary code

~BB ¼ ½b4;b3;b2;b1;b0�

00000 00000

00001 00001

00010 00011

00011 00010

00100 00111

00101 00110

00110 00100

00111 00101

01000 01111

01001 01110

01010 01100

01011 01101

01100 01000

01101 01001

01110 01011

01111 01010

10000 11111

10001 11110

10010 11100

10011 11101

10100 11000

10101 11001

10110 11011

10111 11010

11000 10000

11001 10001

11010 10011

11011 10010

11100 10111

11101 10110

11110 10100

11111 10101
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Walsh function in strict sequency ~WW21; in step 1, we have
~BB ¼ ½b4; b3; b2; b1; b0� ¼ ½1; 0; 1; 0; 1�:

In step 2, we have ~GG ¼ ½g4; g3; g2; g1; g0� ¼ ½b4; b4 � b3;

b3 � b2; b2 � b1; b1 � b0� ¼ ½1; 1; 1; 1; 1�: ~BB represents an
odd number and �bb0 ¼ 0: In Table 3.1, we can verify that the
natural binary code 21 corresponds to the Gray code 31.

In step 3, we have ~WW21 ¼~11� �bb0 �
P4

i¼0 �gi~RRi ¼~11�
0� g4~RR4 � g3~RR3 � g2~RR2 � g1~RR1� g0~RR0 ¼ ~RR4 �~RR3 �~RR2 �
~RR1 �~RR0:

In step 4, we have ~GG ¼ ½g4;g3;g2;g1;g0� ¼ ½1;0;1;0;1� ¼
½1;1� 1;1� 0;0� 0;0� 1� ¼ ½b4;b4 � b3;b3 � b2;b2 � b1;

b1 � b0�: Hence, ~BB¼ ½b4;b3;b2;b1;b0� ¼ ½1;1;0;0;1� and

WP
�!

21 ¼ ~WW25: In Table 3.2, we can verify that the Gray

code 21 corresponds to the natural binary code 25:

WP
�!

21 ¼ ~WW25:

In step 5, we have ~GG ¼ ½g4; g3; g2; g1; g0� ¼ ½1; 0; 1; 0; 1�
and ~GGr ¼ ½g0; g1; g2; g3; g4� ¼ ½1; 0; 1; 0; 1�: In Table 3.2, we
can verify that the Gray code 21 corresponds to the natural

binary code 25 so that WP
�!

21 ¼ ~WW25: Notice that WH
��!

21 ¼
WP
�!

21 ¼ ~WW25:
In step 6, Harmuth ordering for the above function is

generated. Since ½b1; b0� ¼ ½0; 1�;we have ~HH21 ¼~11� ~WW21 ¼
~11�~RR4 �~RR3 �~RR2 �~RR1 �~RR0: Note that instead of adding
the constant vector~11; we can complement any Rademacher
function.

For the second Walsh function in strict sequency ~WW22; in
step 1 we have ~BB ¼ ½1; 0; 1; 1; 0�:

In step 2, we have ~GG ¼ ½g4; g3; g2; g1; g0� ¼ ½b4; b4 �
b3; b3 � b2; b2 � b1; b1 � b0� ¼ ½1; 1; 1; 0; 1�: ~BB represents
an even number, and �bb0 ¼ 1: In Table 3.1, we can verify
that the natural binary code 22 corresponds to the Gray
code 29.

In step 3, ~WW22 ¼~11� �bb0 �
P4

i¼0 �gi~RRi ¼~11� 1�
P4

i¼0

�ðgi~RRiÞ � ð~11�bb0Þ ¼~11� g4~RR4 � g3~RR3� g2~RR2 � g1~RR1 � g0~RR0

¼~11�~RR4 �~RR3 �~RR2 �~RR0: Also in this case, we can
complement any Rademacher function instead of adding
the constant vector~11:

In step 4, we have ~GG ¼ ½g4; g3; g2; g1; g0� ¼ ½1; 0; 1; 1; 0�
¼ ½0� 1; 1� 1; 1� 0; 0� 1; 1� 1�:Hence,~BB ¼ ½b4; b3; b2;
b1; b0� ¼ ½1; 1; 0; 1; 1� and WP

�!
22 ¼ ~WW27:

In Table 3.2, we can verify that the Gray code 22

corresponds to the natural binary code 27: WP
�!

22 ¼ ~WW27:
In step 5, we have ~GG ¼ ½g4; g3; g2; g1; g0� ¼ ½1; 0; 1; 1; 0�

and ~GGr ¼ ½g0; g1; g2; g3; g4� ¼ ½0; 1; 1; 0; 1�: In Table 3.2, we
can verify that the Gray code 13 corresponds to the natural

binary code 9: WH
��!

22 ¼ ~WW9: Notice that WP
�!

22 6¼ WH
��!

22:
In step 6, we obtain Harmuth ordering. Since ½b1; b0� ¼

½1; 0�; we have ~HH22 ¼~11� ~WW22 ¼~11�~11�~RR4 �~RR3 �~RR2 �
~RR0 ¼ ~RR4 �~RR3 �~RR2 �~RR0: (End of example)

4 Hardware implementation

4.1 Architecture

In this paper, we defined five matrices for the Walsh
functions, but implemented only four of them: we did not
implement the Walsh-Rademacher functions in the whole
Rademacher-Walsh matrix but only the primary Radema-
cher functions related to our algorithm as shown in Fig. 3.1.
To implement all theWalsh-Rademacher functions based on
definition 2.2, we need a very large LUT cascade. In the
Walsh-Rademacher matrix, the adjacent rows tend to depend
on different primary Rademacher functions, as shown in the
properties. On the other hand, in the other Walsh matrices,
i.e. Walsh-Hadamard matrix (WH), Walsh matrix in strict
sequency (WS), Walsh-Paley matrix (WP), and Walsh-
Harmuthmatrix (WHR), the adjacent rows tend to depend on
many common primary Rademacher functions. This is the
reason why the Walsh function generator for four selected
orderings by us has compact LUT cascade realisations.

For each ordering, there exist 2n different Walsh function
of n variables. When n is large, it is impractical to generate
all the functions at the same time. So, we generate 2n�p

functions at a time by using the time multiplexing as shown
in Fig. 4.2 and 4.3. It shows an implementation of a
programmable Walsh function generator of order 64.
It consists of the binary counter of six bits and the
combinational part. The combinational part has six inputs
from the counter, and p bits from the Select_Function
inputs, two bits from the Select_Ordering inputs, and 26�p

Table 3.3: Generation of first 16 Walsh functions in strict
sequency order for n= 4 based on algorithm 3.1

~RR0 ¼ ½1111111100000000�

~RR1 ¼ ½1111000011110000�

~RR2 ¼ ½1100110011001100�

~RR3 ¼ ½1010101010101010�

~WW0 ¼~11 ¼ ½1111111111111111�

~WW1 ¼ ~RR0 ¼ ½1111111100000000�

~WW2 ¼~11 � ~RR1 �
~RR0 ¼ ½1111000000001111�

~WW3 ¼ ~RR1 ¼ ½1111000011110000�

~WW4 ¼~11 � ~RR2 �
~RR1 ¼ ½1100001111000011�

~WW5 ¼ ~RR2 �
~RR1 �

~RR0 ¼ ½1100001100111100�

~WW6 ¼~11 � ~RR2 �
~RR0 ¼ ½1100110000110011�

~WW7 ¼ ~RR2 ¼ ½1100110011001100�

~WW8 ¼~11 � ~RR3 �
~RR2 ¼ ½1001100110011001�

~WW9 ¼ ~RR3 �
~RR2 �

~RR0 ¼ ½1001100101100110�

~WW10 ¼~11 � ~RR3 �
~RR2 �

~RR1 �
~RR0 ¼ ½1001011001101001�

~WW11 ¼ ~RR3 �
~RR2 �

~RR1 ¼ ½1001011001101001�

~WW12 ¼~11 � ~RR3 �
~RR1 ¼ ½1010010110100101�

~WW13 ¼ ~RR3 �
~RR1 �

~RR0 ¼ ½1010010101011010�

~WW14 ¼~11 � ~RR3 �
~RR0 ¼ ½1010101001010101�

~WW15 ¼ ~RR3 ¼ ½1010101010101010�

Table 3.4: Generation of first 16 Walsh functions in
Harmuth order for n = 4 based on algorithm 3.1

~HH0 ¼ ~WW0 ¼ 1 ¼ ½1111111111111111�

~HH1 ¼~11 � ~WW1 ¼~11 � ~RR0 ¼ ½0000000011111111�

~HH2 ¼~11 � ~WW2 ¼ ~RR1 �
~RR0 ¼ ½0000111111110000�

~HH3 ¼ ~WW3 ¼ ~RR1 ¼ ½1111000011110000�

~HH4 ¼ ~WW4 ¼~11 � ~RR2 �
~RR1 ¼ ½1100001111000011�

~HH5 ¼~11 � ~WW5 ¼~11 � ~RR2 �
~RR1 �

~RR0 ¼ ½0011110011000011�

~HH6 ¼~11 � ~WW6 ¼ ~RR2 �
~RR0 ¼ ½0011001111001100�

~HH7 ¼ ~WW7 ¼ ~RR2 ¼ ½1100110011001100�

~HH8 ¼ ~WW8 ¼~11 � ~RR3 �
~RR2 ¼ ½1001100110011001�

~HH9 ¼~11 � ~WW9 ¼~11 � ~RR3 �
~RR2 �

~RR0 ¼ ½0110011010011001�

~HH10 ¼~11 � ~WW10 ¼ ~RR3 �
~RR2 �

~RR1 �
~RR0 ¼ ½0110100110010110�

~HH11 ¼ ~WW11 ¼ ~RR3 �
~RR2 �

~RR1 ¼ ½1001011001101001�

~HH12 ¼ ~WW12 ¼~11 � ~RR3 �
~RR1 ¼ ½1010010110100101�

~HH13 ¼~11 � ~WW13 ¼~11 � ~RR3 �
~RR1 �

~RR0 ¼ ½0101101010100101�

~HH14 ¼~11 � ~WW14 ¼ ~RR3 �
~RR0 ¼ ½0101010110101010�

~HH15 ¼ ~WW15 ¼ ~RR3 ¼ ½1010101010101010�
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outputs. In the basic design (i.e. p ¼ 0Þ; the number of
outputs is 26 ¼ 64: To reduce the number of outputs, we
introduced p control signals to select 2p different outputs.
Thus, the combinational part has pþ 8 inputs, and 26�p

outputs. For the circuits with p ¼ 2; 3 and 4, the numbers of
outputs are 16, 8, and 4, respectively. The Select_Ordering
inputs specify one of the four orderings: Hadamard,
Harmuth, Paley and strict sequency.
In a similar manner, we can design other function

generators with the binary counter of N-bits. In this case, the
combinational part has N þ pþ 2 inputs and 2N�p outputs.
In the following subsections, we implemented the combina-
tional part by LUT cascades and FPGAs. First, we defined
Walsh functions ~WW0 through ~WW63 using algorithm 3.1 and
then selected required sequence by multiplexers. Finally, we
used additional multiplexers to select the required
Walsh functions. To generate LUT cascades we described

the circuit by our original HDL. To generate FPGAs, we
converted the HDL description into Verilog HDL descrip-
tion by our tools.

4.2 LUT cascade implementation

An LUT cascade consists of cells implemented by memory.
Unlike ordinary FPGAs, an LUT cascade uses cells with
k inputs and many outputs, where k is often larger than 5.
By using the algorithm in [39], we mapped the combina-
tional part of the function generator into LUT cascades,
where each cell has at most k ¼ 6 inputs and 6 outputs.

For p ¼ 2; we have a 10-input, 16-output circuit shown in
Fig. 4.4a. It requires 20 cells and 91 LUT outputs. The total
number of bits in the LUTs is 26 � 91 ¼ 5824 bits:

For p ¼ 3; we have an 11-input, 8-output circuit shown in
Fig. 4.4b. It requires 21 cells and 77 LUT outputs. The total
number of bits in the LUTs is 26 � 77 ¼ 4928 bits:

For p ¼ 4; we have a 12-input, 4-output circuit that
shown in Fig. 4.4c. It requires 12 cells and 37 LUT outputs.
The total number of bits in the LUTs is 26 � 37 ¼
2368 bits:

If the circuits were implemented by a single memory,
then we need the following number of bits: For
p ¼ 2; 16� 210 ¼ 16384 bits; for p ¼ 3; 8� 211 ¼ 16384
bits; and for p ¼ 4; 4� 212 ¼ 16384 bits: Thus, we need
the same number of bits for all three cases. Note, that LUT
cascade realisation requires many fewer bits than the single
memory realisation.

Since LUT cascades have regular structures, they are easy
to lay out, and the interconnection is simple. The delay of
each cell in the LUT cascade is at most 4 ns [40], so the total
delay is about 20 ns. Thus, the operating speed is about
50MHz.

4.3 FPGA implementation

As for the target device, we used Altera FLEX10K
EPF10K10LC84-3. It has 576 LE (logic elements) and 59
user I=O pins. In this case, we optimised the design by
Sinplify Pro [41], and mapped by Quartus II [42]. Since
each LE has a 4-input 1-output LUT, it requires 16 bits.

For p ¼ 2; it required 122 LEs and the delay was 31.1 ns.
The total number of bits used in the LEs is 122� 16 ¼
1952 bits:

For p ¼ 3; it required 102 LEs and the delay was 25.7 ns.
The total number of bits used in the LEs is 102� 16 ¼
1632 bits:

Fig. 4.2 Programmable Walsh function generator for 64 outputs

Fig. 4.3 LUT cascade

Fig. 4.4 LUT cascades realisation
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For p ¼ 4; it required 76 LEs and the delay was 30.5 ns.
The total number of bits used in the LEs is 76� 16 ¼
1216 bits:

In the FPGA design, we did not use any special technique
to reduce the delay. Although the FPGA implementations
require fewer bits in LUTs than LUT cascades, the
interconnections in FPGAs are much more complex than
in LUT cascades. Thus, we need a considerable amount of
chip area for interconnections. The operating speed is
between 30 to 40MHz. These data show that a small FPGA
is sufficient for this application.

5 Conclusion

In this paper, we have presented a unified algorithm to
generate Walsh functions in four different orderings. Walsh
functions in strict sequency can be generated directly from
the primary Rademacher functions and their extensions, and
from these Walsh functions remaining three orderings,
Paley, Hadamard and Harmuth, are derived. Using these
properties, we also presented the design method for a Walsh
function generator. We designed the Walsh function
generator of order 64 with LUT cascades and an FPGA,
and estimated the amount of hardware and operating speed.
We confirmed that it operates at the speed of 50MHz when
it is implemented by LUT cascades, and 30 to 40MHz when
it is implemented by FPGAs.

Various problems in digital system design and testing can
be expressed as a sequence of operations on discrete
functions or its corresponding spectra [9, 24]. A major
advantage of the approach presented here is the convenience
of the hardware implementation for the Walsh functions of
order n in four most important orderings. However, the
presented unified algorithm can be implemented not only in
hardware but also in software. By using the presented
algorithms and relations in the corresponding spectral data,
we can design the function generator with larger dimensions
that are especially important in the recent applications of the
Walsh functions in VLSI testing, pattern recognition and
digital signal and image processing [1–8, 10, 13, 14, 18, 20,
24, 28, 30–33].
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