
��������������������	��
�
����
�� ��������

Implementations of Reconfigurable Logic Arrays on FPGAs

Tsutomu Sasao and Hiroki Nakahara
Department of Computer Science and Electronics,

Kyushu Institute of Technology,
Iizuka 820-8502, Japan

Abstract

This paper presents a method to implement a reconfig-
urable logic array on an FPGA. To design circuits with 2-
valued k-input LUTs, 2k-valued logic is introduced. Stan-
dard benchmark functions as well as symmetric functions
are efficiently implemented by a logic array with 2k-valued
variables. Number of products and number of bits to rep-
resent functions by the expressions with 2k-valued vari-
ables for k = 1, 2, 3, 4, and 5 are compared. Both sum-
of-products expressions and EXOR sum-of-products expres-
sions of 2k-valued logic significantly reduces needed FPGA
resources, when 2 ≤ k ≤ 5. Experimental results for
benchmark functions and symmetric functions are shown.
Implementations of arrays with 16-valued variables on Xil-
inx and Altera FPGAs are also shown.

1. Introduction

In this paper, we consider a method to implement a re-
configurable logic array on an FPGA. It is similar to a pro-
grammable logic array, but logically more powerful. We
use 2k-valued logic to represent a binary logic circuit. We
present two different realizations on FPGAs: combinational
one and sequential one. The combinational one uses config-
urable logic blocks (CLBs), while the sequential one uses
M4Ks and logic elements (LEs). Such methods are promis-
ing for dynamically reconfigurable circuits [2, 4, 6, 15].

We also consider the optimal number k of the inputs for
LUTs to implement various logic functions. This paper is
organized as follows: Section 2 presents two methods to
implement expressions with multi-valued variables by FP-
GAs. Section 3 introduces expressions with multi-valued
variables. Section 4 considers the complexities of expres-
sions. Section 5 shows the experimental results. And, fi-
nally, Section 6 concludes the paper.

m0

m1

m3

m2

m4

m5

m 7

m 6

m 8

m 9

m11

m10

m12

m13

m15

m14
x

x

3

1

x(a) (b)2

x4
1

1
1

1

}{X 13,11,8,1

Figure 2.1. Map for 4-variable function.

2. Realization of Expressions with 2k-Valued
Variables on an FPGA

In this part, we introduce logic arrays with 2k-valued
variables, which can be more efficient than conventional
logic arrays. An FPGA contains many look-up tables
(LUTs). Here, we introduce 16-valued logic to design 4-
input LUT circuits. A 4-input LUT realizes an arbitrary
function of four variables. Fig. 2.1 (a) shows a map of a 4-
variable function. An arbitrary 4-variable logic function can
be viewed as a subset of 16 minterms {m0, m1, . . . , m15}.
For example, the function in Fig. 2.1 (b) can be represented
by a set of four minterms {m1, m8, m11, m13}. Instead of
using a set of minterms, we can use a 16-valued literal. Let
four variables be treated together as X = (x1, x2, x3, x4).
Then, X is considered as a 16-valued variable, and takes one
of 16 values {0, 1, . . . , 14, 15}. In this case, the function in
Fig. 2.1 (b) can be represented by the literal X{1,8,11,13}:
It shows that the function is 1 if and only if the input com-
bination X = (x1, x2, x3, x4) represents either 1, 8, 11, or
13.

2.1 Using CLBs Only

Consider the case of a Xilinx FPGA [17]. In this FPGA,
a multiplexer (MUX) is attached to the output of each
LUT. By using multiplexers, the logical AND of 4-variable
functions can be implemented. For example, as shown

1

0

0 1

0 1

X1=(x1, x2, x3, x4)

X2=(x5, x6, x7, x8)

X3=(x9, x10, x11, x12)

g2

g3

g1

g1(X1) g2(X2) g3(X3)

0

0

0 1

Figure 2.2. Realization of AND with MUXs.

X1

X2

X3

X4

4

4

4

4

Figure 2.3. Realization of an SOP with 16-
valued variables.

in Fig. 2.2, three LUTs are connected by the MUX chain
to realize the logical product g1(X1)g2(X2)g3(X3), where
X1 = (x1, x2, x3, x4), X2 = (x5, x6, x7, x8), and X3 =
(x9, x10, x11, x12). Thus, Fig. 2.2 implements a product of
16-valued literals of the form XS1

1 XS2
2 XS3

3 , where Si ⊆ P
and P = {0, 1, 2, . . . , 15}. Fig. 2.3 shows a circuit for a
sum-of-products expression (SOP), where an OR gate is
implemented by LUTs. When the OR gate is replaced by
an EXOR gate, we have a circuit for an EXOR sum-of-
products expression (ESOP). In Fig. 2.3, thick horizontal
lines denote bundles of four binary lines. Each horizontal
bundle can be viewed as carrying a 16-valued variable, and
each column realizes a product of up to four 16-valued lit-
erals.

To realize a multiple-output function, a programmable
OR (EXOR) gate can be used for each output.

2.2 Using both Embedded RAMs and
Logic Elements

Modern FPGAs contain many embedded RAMs as well
as logic elements (LEs). For example, Altera’s FPGAs have
embedded RAMs, called M4K [1]. It can be used as a 7-
input 32-output memory, which is equivalent to 32 copies
of 7-input LUTs. However, as will be shown later, 7-input
LUTs are inefficient to implement a logic array. So, we use

M4K as 32 × 8 = 256 copies of 4-input LUTs by using a
sequential method. Fig. 2.4 shows a sequential implementa-
tion of 32 products having forms XS0

0 XS1
1 · · ·XS7

7 by using
an M4K. For each clock, each literal XSi

i is evaluated, and
after 8 clocks, products of 8 literals are evaluated. The MPX
signal consisting of 3 bits specifies i, and the multiplexer se-
lects Xi.

Fig. 2.5 shows a sequential realization of an SOP with
32 inputs, 8 outputs, and 8 × 32 = 256 products. Prod-
ucts are implemented by 8 copies of M4Ks and many LEs.
Eight copies 256-input OR (EXOR) gates are implemented
by LEs. (The details are shown in Subsection 5.2.) In this
paper, the architectures shown in Figs. 2.3 and 2.5 are called
reconfigurable logic arrays with 16-valued variables. In
similar ways, reconfigurable logic arrays with 2k-valued
variables can be implemented using k-input LUTs.

3. Expressions with Multi-Valued Inputs [12]

To show a design method, we need some definitions.
They are extensions of 2-valued cases to multi-valued cases
[12, 8].

Definition 3.1 A mapping f : Pn → B is a p-valued in-
put 2-valued output function, where P = {0, 1, . . . , p−1}
and B = {0, 1}. Let X be a variable that takes its value
from P = {0, 1, . . . , p − 1}. Let S be a subset (S ⊆ P)
of P . Then, XS is a literal of X . When X ∈ S,
XS = 1, and when X /∈ S, XS = 0. Let Si ⊆ P
(i = 1, 2, . . . , n), then X1

S1X2
S2 · · ·Xn

Sn is a logical
product.

∨
(S1,S2,...,Sn) X1

S1X2
S2 · · ·Xn

Sn is a sum-of-
products expression (SOP). When Si = P , Xi

Si = 1 and
the logical product is independent of Xi. In this case, literal
Xi

P is redundant and can be deleted. A logical product is
also called a term, or a product term. When |Si| = 1
for (i = 1, 2, . . . , n), a logical product corresponds to an
element of the domain. This product is a minterm. When
Si = P for (i = 1, 2, . . . , n), the logical product corre-
sponds to the constant 1.

When p = 2, a function is a 2-valued logic function.
When we consider 2-valued logic functions only, we often
represent the literal X{0} by X , and X{1} by X . In an SOP,
replacing the OR operators with the EXOR operators will
produce an EXOR sum-of products expression (ESOP).
Xi is often called as a part.

An arbitrary multi-valued input 2-valued output function
is represented by an SOP (ESOP). Many SOPs (ESOPs)
exist that represent the same function. Among them, the
one with the minimum number of products is the mini-
mum SOP (minimum ESOP). MINI [3] and ESPRESSO-
MV [8] are SOP minimizers, while EXMIN2 [12] and
EXORCISM-MV [14] are ESOP minimizers.

Interesting problems are

M4K
(7-input 32-output)

32 products are
connected to OR trees

FF
clk

rst

din

dout

X0
X1

X7

used as 32 LUTs3

4

4X0

X1

X7

MPX

1 2 32

Figure 2.4. Sequential realization of products with 16-valued variable.

M4K M4K M4K M4K M4K M4K M4K M4K

3

4

8

4
X0
X1

X7

MPX

Figure 2.5. Sequential realization of SOP with 16-valued variables.

1. Find the optimum value for k, the number of binary
variables in a group.

2. Find the partition of the input variables [13].

The first problem is similar to the problem of finding the
optimum size of LUTs in FPGAs [7, 5]. In this paper, we
focus on the first problem.

4. Expressions with 2k-Valued Variables

4.1 Number of Products

The number of products to represent a function depends
on n, the number of inputs, and k, the number of variables
in parts. In general, the larger the value of k, the smaller the
number of products to represent the function.

Theorem 4.1 An arbitrary function of n = kr variables
can be represented by an SOP (ESOP) with 2k-valued vari-
ables using at most 2n−k products.

Theorem 4.2 For any expression with 2-valued variables,
there exist an expression with 4-valued variables that rep-
resents the same function as 2-valued expression, and that
requires not more products than 2-valued one.

Expressions with multi-valued variables efficiently rep-
resent symmetric functions.

Theorem 4.3 Consider a function f(X1, X2, . . . , Xr),
where Xi consists of k binary variables. Let
f(X1, X2, . . . , Xr) be partially symmetric with re-
spect to Xi for i = 2, . . . , r. That is, f is invariant
under the permutation of variables in Xi. Then, f can be
represented by an SOP (ESOP) with 2k-valued variables
using at most (k + 1)r−1 products.

4.2 Number of Bits

SOPs or ESOPs can be represented by the positional
cube notation [12]. To represent a part with a k-valued vari-
able, 2k bits are used. The amount of memory to represent
an expression is estimated by the number of the bits for the
positional cubes, since the LUTs in Fig. 2.3 store these bit
patterns.

In the expression, each part takes 2k values, and there
are r parts, so the number of bits to represent a product
XS1

1 XS2
2 · · ·XSr

r is r2k.

Definition 4.1 Let µ(k) be the number of bits to represent
a function f(X1, X2, . . . , Xr) by an expression, where Xi

consists of k binary variables, and let p(k) be the number of
products in the expression. For m-output function, µ(k) =
p(k)(n

k 2k + m), where n = kr. In the case of a single-
output function, we can omit the programmable OR part
by generating null products1. Thus, µ(k) = p(k)r2k =
p(k)n

k 2k, for single output function.

A variable with a large k requires more bits to represent a
part than a variable with a small k. On the other hand, vari-
ables with large k often require fewer products than vari-
ables with small k. Thus, for each function, there is an op-
timum k that minimizes the total number of bits.

Example 4.1 Consider the function shown in Fig. 2.1.
When k = 1 (2-valued variables)
The function can be represented as f(x1, x2, x3, x4) =
x̄1x̄2x̄3x4 ∨ x1x̄2x̄3x̄4 ∨ x1x̄2x3x4 ∨ x1x2x̄3x4. Thus, the
number of products is four. The positional cubes are

x1 x2 x3 x4
01 01 01 01
10 − 10 − 10 − 01
01 − 10 − 10 − 10
01 − 10 − 01 − 01
01 − 01 − 10 − 01

Thus, the number of bits is 8 × 4 = 32.
When k = 2 (4-valued variables)
Let X1 = (x1, x2) and X2 = (x3, x4). The function can
be represented as f(X1, X2) = X0

1X1
2 ∨X2

1X0
2 ∨X2

1X3
2 ∨

X3
1X1

2 = X
{0,3}
1 X1

2∨X2
1X

{0,3}
2 . Thus, the number of prod-

ucts is two. The positional cubes are

X1 X2
0123 0123
1001 − 0100
0010 − 1001

Thus, the number of bits is 8 × 2 = 16.
When k = 4 (16-valued variable)
Let X1 = (x1, x2, x3, x4). The function can be represented
as f(X1) = X1

1 ∨ X8
1 ∨ X11

1 ∨ X13
1 = X

{1,8,11,13}
1 . Thus,

the number of products is just one. The positional cube is

X1
0000000000111111
0123456789012345
0100000010010100

Thus, the number of bits is 16 × 1 = 16. Note that
this is the single-memory realization of the logic function.

(End of Example)

Theorem 4.4 For any expression with 2-valued variables,
there exist an expression with 4-valued variables that rep-
resents the same function as 2-valued expression, and that
requires not more bits than 2-valued one.

1A null product can be generated by Xφ

The above theorem shows that to minimize the total
number of bits, we have only to consider the case of k ≥ 2.

In the next section, we confirm this observation.

5. Experimental Results

5.1 Logic Synthesis

We minimized standard PLA benchmarks [16] as well as
adders and symmetric functions.
Standard Benchmark Functions
In Table 5.1, In denotes the number of inputs; Out denotes
the number of outputs; SOP denotes the number of products
in a sum-of-products expression; ESOP denotes the num-
ber of products in an EXOR sum-of-products expression.
2k-valued denotes the number of products in an expression
with 2k-valued variables. To derive 2k-valued variables, k
binary variables are grouped. To obtain 4-valued and 16-
valued expressions, Algorithm 6.1 in [13] was used. To ob-
tain 8-valued and 32-valued expressions, a greedy method
was used. For minimization of SOPs, MINI2 [12] was used.
For minimization of ESOPs, EXMIN3, an improved ver-
sion of EXMIN2 [12], was used. Table 5.1 shows that ex-
pressions with larger k require fewer products than expres-
sions with smaller k. For the adder (adr12), and some arith-
metic circuits (e.g., alu4, alupla, cordia, tial), ESOPs re-
quire fewer products than SOPs, in many cases. However,
for some functions (e.g., apex2), ESOPs require more prod-
ucts than SOPs.

Table 5.2 shows the numbers of bits to represent func-
tion: µ(k) = p(k)(n

k 2k + m). For alu4, apex2, intb, rdm16
and tial, k = 2 gives the smallest realizations; for adr12,
alupla, cordia and t481, k = 4 gives the smallest realiza-
tions; and for misex3, k = 5 gives the smallest realization.
The minimum values are highlighted by bold face letters.
Symmetric Functions
Table 5.3 shows the number of products to represent
symmetric functions SYM(n) and WGT(n) [12]. Let
(x1, x2, . . . , xn) be the inputs and n = 3m. Then,
SY M(n) = 1 iff m ≤ ∑n

i=1 xi ≤ 2m. WGT (n) is a bi-
nary representation of the number of 1’s in the inputs. When
n = 2, it corresponds to a half adder, while when n = 3, it
corresponds to a full adder. When the number of variables
of an original function is not a multiple of k, only one part
has fewer than k binary variables. For example, to imple-
ment sym12 by 32-valued logic, 12 variables are partitioned
into X1 = (x1, x2, x3, x4, x5), X2 = (x6, x7, x8, x9, x10),
and X3 = (x11, x12). Note that in the case of symmetric
functions, finding the optimum grouping is much simpler
than non-symmetric functions.

Table 5.4 shows that the number of bits to represent the
symmetric functions. For the functions in this table, expres-
sions with 16-valued variables are more efficient than ones

Table 5.1. Number of products to represent benchmark functions.

In Out 2-valued 4-valued 8-valued 16-valued 32-valued
k = 1 k = 2 k = 3 k = 4 k = 5

n m SOP ESOP SOP ESOP SOP ESOP SOP ESOP SOP ESOP
adr12 24 13 24523 8191 145 79 68 43
alu4 14 8 577 288 253 124 193 110 156 107 121 100
alupla 25 5 2144 1429 1008 806 625 614 429 372 480 397
apex2 39 3 39 60 14 27 11 13 14 27 14 24
cordia 23 2 914 776 67 104 28 17 15 10 11 7
intb 15 7 629 261 294 172 230 140 200 129 135 110
misex3 14 14 690 507 462 401 345 334 192 177 126 121
rdm16 16 16 404 176 281 140 213 121 140 93 105 72
t481 16 1 481 13 32 8 32 8 5 3 5 3
tial 14 6 575 428 230 172 230 152 195 137 158 118

Table 5.2. Number of bits to represent benchmark functions.

In Out 2-valued 4-valued 8-valued 16-valued 32-valued
k = 1 k = 2 k = 3 k = 4 k = 5

n m SOP ESOP SOP ESOP SOP ESOP SOP ESOP SOP ESOP
adr12 24 13 1495903 499651 8845 4819 7412 4687
alu4 14 8 20772 11196 9108 4500 8749 4987 9984 7296 11810 10150
alupla 25 5 117920 78595 55440 45375 44792 44003 45045 39795 77220 65505
apex2 39 3 3159 4860 1134 2187 1177 1391 2226 3816 3536 6062
cordia 23 2 43872 37248 3216 4992 1773 1077 1410 940 1641 1044
intb 15 7 23273 9731 10915 6512 10810 6580 13400 8643 13905 11536
misex3 14 14 28980 21294 19404 18102 17710 17145 13440 12670 13054 12536
rdm16 16 16 19392 8448 13488 6720 12379 7099 11200 7440 12432 8525
t481 16 1 15873 429 1056 264 1397 349 325 195 517 310
tial 14 6 19686 14552 9588 5848 10097 6587 12090 8556 15105 11281

with 4-valued variables. For sym12 and wgt12, k = 4 gives
the realizations with the smallest number of bits; for sym15
and wgt15, k = 5 gives the smallest realizations; and for
sym18, k = 6 gives the smallest realization. Please note
that by Theorem 4.3 and Definition 4.1, we have the rela-
tion:

µ(k) ≤ (k + 1)
n
k (

n

k
)2k.

Thus, for a large value of n, literals with large value of k
tend to reduce the total number of bits.

5.2 Implementation on FPGAs

To assess the feasibility of the implementations on FP-
GAs, we designed two types of reconfigurable logic arrays.

Using CLBs Only
We implemented the array with 16-valued variables shown
in Fig. 2.3 on Xilinx Spartan-3 XC3S4000 FPGA. LUTs of
Xilinx FPGAs have two operation modes: the shift register
(SRL16) mode, and the 4-LUT mode. In the shift register
mode, reconfiguration of logic is done.

To implement a logic array for 32 inputs, 8 outputs, and
256 products, we had the following:

The number of LUTs: 5165.
The number of Slices: 4955.
Operating Frequency: 115 MHz.
Latency: 3 clocks.

In this case, one clock is used for the evaluation of the
products, and two clocks are used for the OR gates. Note
that 256-input OR gates were implemented by two-stage
pipeline of 16-input OR gates.

For the product terms, 8 × 256 = 2048 LUTs are used.
For the pipeline registers, (256+16)× 8 = 2176 LUTs are
used. For the OR gates, (64 + 16 + 4 + 1)× 8 = 680 LUTs
are used. Additional LUTs are used for writing the data into
LUTs.

Using Both Embedded Memories and Logic Elements
We implemented the array with 16-valued variables shown
in Fig. 2.5 on Altera Cyclone II EP2C35 FPGA. The design
was done by Quartus II version 6.0.
In Fig. 2.4, the products are evaluated as follows: Ini-
tially, all the FFs are set to 1. After the first clock, the
FFs represent XS0

0 . After the second clock, the FFs rep-
resent XS0

0 XS1
1 . And, after 8 clocks, the FFs represent

XS0
0 XS1

1 · · ·XS7
7 . Additional 2 clocks are used for the

pipeline registers in the 256-input OR gates. Since M4Ks
are easily modified during operation, products are dynami-

Table 5.3. Number of products to represent symmetric functions.

In Out 2-valued 4-valued 8-valued 16-valued 32-valued 64-valued
k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

n m SOP ESOP SOP ESOP SOP ESOP SOP ESOP SOP ESOP SOP ESOP
sym12 12 1 495 245 90 66 31 26 15 12 12 12 6 6
sym15 15 1 3003 1310 438 268 101 223 49 45 21 13 22 13
sym18 18 1 18673 7902 1598 919 346 263 172 139 75 74 29 35
wgt12 12 4 4095 422 425 146 135 54 51 28 41 26 17 14
wgt15 15 4 32767 2978 2510 886 530 223 224 75 77 36 69 33

Table 5.4. Number of bits to represent symmetric functions.

In Out 2-valued 4-valued 8-valued 16-valued 32-valued 64-valued
k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

n m SOP ESOP SOP ESOP SOP ESOP SOP ESOP SOP ESOP SOP ESOP
sym12 12 1 11880 5880 2160 1584 992 832 720 576 922 922 768 768
sym15 15 1 90090 39300 13140 8040 4040 8920 2940 2700 2016 2208 3520 2080
sym18 18 1 668304 284472 57528 33084 16608 12624 12384 10008 8640 8525 5952 6720
wgt12 12 4 98280 10128 10200 3504 4320 1728 2448 1440 3149 1997 2176 1792
wgt15 15 4 983010 89340 75300 26580 21200 8920 13440 4500 7392 3840 11040 5280

cally reconfigurable. However, logic elements (LEs) of Al-
tera FPGAs do not have the shift register mode. Thus, we
appended mechanism to reprogram the OR (EXOR) con-
nection as shown in Fig. 5.1. For each input of the OR
gate, a 2-input AND gate and a flip-flop (FF) are attached.
When the value of the FF is 1, the corresponding input is
selected. Otherwise, that input is ignored. To program the
OR connections, the FFs are connected to form shift regis-
ters. The number of LEs to implement the programmable
OR (EXOR) gates is about 4

3pm, where p is the number
of the products, and m is the number of the outputs. To
implement a logic array for 32 inputs, 8 outputs, and 256
products, we had the following:

The number of LEs: 2663.
The number of M4Ks: 8 (32640 bits).
Operating Frequency: 235 MHz.
Latency: 10 clocks.

In this case, 8 clocks are used for the evaluation of the prod-
ucts, and two clocks are used for the OR gates. Again, 256-
input OR gates were implemented by two-stage pipeline of
16-input OR gates. Note that the delay time of the circuit
increases with the number of parts (r = n

k). Thus, to reduce
the delay, k must be increased. However, the increase of k
can increase the number of bits to represent the function.

Our experimental results show that the circuit using
CLBs only is faster than ones using M4Ks and LEs. How-
ever, the method using M4Ks and LEs can implement more
products than the method using CLBs only in comparable
FPGA devices.

6. Conclusion and Comments

In this paper, we showed that an FPGA with k-input
LUTs directly implements 2k-valued expressions. We also
presented two methods to implement reconfigurable logic
arrays on an FPGA. Experimental results show that expres-
sions with 2k-valued variables (k ≥ 2) require fewer prod-
ucts than corresponding expressions with 2-valued vari-
ables. For some functions, ESOPs require fewer products
than SOPs, and vice versa. Since both expressions can be
implemented in the same architecture, we can select the
smaller ones. The number of bits to represent the expression
with 2k-valued variables takes its minimum when k = 4 for
many functions. For some symmetric functions, k = 5 or
k = 6 give the smallest realizations.

A reconfigurable logic array can be considered as a
generalization of a content addressable memory (CAM)
[2, 4, 6]. A function can be modified by only changing the
contents of LUTs or BRAMs. The input/output pin assign-
ment can be modified by only permutating the data for the
columns or rows, in many cases. The reconfigurable logic
array can implement different functions without changing
the interconnections, so it can be reconfigured dynamically.
Thus, it is suitable for pattern matching and networking.

This paper, we assume that all the LUTs have the same
number of inputs. However, LUTs with different number
of inputs can be used. The logic design method is simi-
lar to that of PLAs with k-bit input decoders [9, 12]. The
PLAs with k-bit input decoders use 2k literal lines for each
group, while the reconfigurable logic array with 2k-valued
variables uses only k horizontal lines. Also, in the PLAs,

M4K

output 0

output 1

output m-1

(1: select 0:ignore)

to OR gate

FF

4

4X0

X1

X7

4 3

MPX

FF
clk

rst

din

dout

Figure 5.1. Implementation of programmable multi-output circuit.

each input decoder implements all the 2k literals, while in
the reconfigurable logic array, each LUT implements only
one literal.

We are now improving methods to partition of the input
variables [13], and outputs.

7. Acknowledgments

This research is supported in part by the Grants in Aid for
Scientific Research of JSPS, and the Grant of Knowledge
Cluster Project of MEXT.

References

[1] Altera, http://www.altera.com/
[2] S. A. Guccione, D. Levi, and D. Downs, “A reconfigurable

content addressable memory,” In Jose Rolim et al. editors,
Parallel and Distributed Processing, pp. 882-889, Springer-
Verlag, Berlin, May 2000. Proceedings of the 15th Inter-
national Parallel and Distributed Processing Workshops,
IPDPS 2000. Lecture Notes in Computer Science 1800.

[3] S. J. Hong, R. G. Cain and D. L. Ostapko, “MINI: A heuris-
tic approach for logic minimization,” IBM J. Res. & De-
velop., pp. 443-458, Sept. 1974.

[4] P. B. James-Roxby and D.J. Downs, “An efficient content-
addressable memory implementation using dynamic rout-
ing,” FCCM’01 2001, pp. 81-90, 2001.

[5] J. Kouloheris and A. El Gamal, “FPGA Performance vs. Cell
Granularity,” Proc. 1991 CICC, pp.6.2.1-6.2.4, May 1991.

[6] G. Nilsen, J. Torresen, and O. Sorasen, “A variable word-
width content addressable memory for fast string matching,”
Norchip Conference, 2004.

[7] J. Rose, R.J.Francis, D. Lewis, and P. Chow, “Architecture
of field programmable gate arrays: The effect of logic block
functionality on area efficiency,” IEEE J. Solid State Circ.
25,5, pp. 1217-1225, Oct. 1990.

[8] R. L. Rudell and A. Sangiovanni-Vincentelli, “Multiple-
valued minimization for PLA optimization”, IEEE Trans.
CAD, Vol. 6(5), pp. 727-750, Sep. 1987.

[9] T. Sasao, “Input variable assignment and output phase op-
timization of PLA’s,” IEEE Trans. Comput., Vol. C-33, No.
10, pp. 879-894, Oct. 1984.

[10] T. Sasao, “EXMIN2: A simplification algorithm for
exclusive-OR-sum-of-products expressions for multiple-
valued input two-valued output functions,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 12, No. 5, pp. 621-632, May 1993.

[11] T. Sasao (ed.), Logic Synthesis and Optimization, Kluwer
Academic Publishers, 1993.

[12] T. Sasao, Switching Theory for Logic Synthesis, Kluwer
Academic Publishers, 1999.

[13] T. Sasao, “An application of 16-valued logic to design of
reconfigurable logic arrays,” ISMVL-2007, Oslo, Norway,
May 13-16, 2007.

[14] N. Song and M. A. Perkowski, “Minimization of exclu-
sive sum-of-products expressions for multiple-valued input,
incompletely specified functions,” IEEE Trans.Computer-
Aided Design of Integrated Circuits and Systems, Vol. CAD-
15, No. 4, pp. 385-395, April 1996.

[15] I. Sourdis and D. Pnevmatikatos, “Pre-decoded CAMs for
efficient and high-speed NIDS pattern matching,” 12th
Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM’04), pp. 258-267, April 20-
23, 2004.

[16] S. Yang, “Logic synthesis and optimization benchmark user
guide, version 3.0,” MCNC, Jan. 1991.

[17] Xilinx, http://www.xilinx.com/

	Welcome Page
	Table of Contents
	Author Index

