
A TCAM Generator for Packet Classification

Infall Syafalni

Department of Computer Science and Electronics

Kyushu Institute of Technology

Iizuka 820-8502, Japan

infall@aries01.cse.kyutech.ac.jp

Tsutomu Sasao

Department of Computer Science

Meiji University

Kawasaki, Kanagawa 214-8571, Japan

sasao@cs.meiji.ac.jp

Abstract—In the internet, packets are classified by source and
destination addresses and ports, as well as protocol type. Ternary
content addressable memories (TCAMs) are often used to perform
this operation. This paper shows a method to reduce the number
of words in TCAM for multi-field classification functions. We use
head-tail expressions to represent a multi-field classification rule.
Furthermore, we present an O(r2)-algorithm, called MFHT, to
generate simplified TCAMs for two-field classification functions,
where r is the number of rules. Experimental results show that
MFHT achieves a 58% reduction of words for random rules and a
52% reduction of words for ACL and FW rules. Moreover, MFHT
is fast and useful for simplifying TCAM for packet classification.

Index Terms—Logic design, Head-tail expressions, Multi-field
classification functions, TCAMs.

I. INTRODUCTION

Logic minimization in packet classification is quite different

from that of large-scale integrated circuit (LSI) design. A

ternary content addressable memory (TCAM) is used instead

of a two-level AND-OR circuit. The optimization is more

complicated than that of sum-of-products expressions (SOPs)

[4]. Also, the logic optimization must be done much faster than

conventional ones. For some cases, the data must be updated in

every second. So, we cannot use conventional time-consuming

algorithms [2], [6].

A. Packet Classification

In the internet, packets are classified by source address (SA),

destination address (DA), source port (SP), and destination port

(DP), as well as the protocol type (PO). Table I shows an

example of a packet classifier. In this case, the classifier consists

of three rules, and each rule consists of five fields. In IPV4, an

internet address is specified by a 32-bit number, while the ports

are specified by intervals of 16-bit numbers. The protocol type

is specified by an 8-bit number. The fields often have *, which

denotes don’t care. If the result of the classification is Accept,

then the corresponding packet is sent to the next destination.

Otherwise, the packet is discarded.

TABLE I
EXAMPLE OF RULES IN PACKET CLASSIFIER

SA DA SP DP PO Action

66.219.40.∗ 176.31.166.∗ [0, 65535] 6790 TCP Accept

∗ 15.238.61.128 ∗ [1024, 65535] ∗ Accept

∗ ∗ ∗ ∗ ∗ Discard

In packet classification [1], rules are applied from the top

to the bottom. Thus, in Table I, if the source address is

66.219.40.11, the destination address is 176.31.166.23, the

source port is 1025, the destination port is 6790, and the

protocol type is TCP, then the first rule is satisfied, and the

packet is sent to the next address. If the first rule is not satisfied,

then the second rule is checked. If the second rule is not

satisfied, then the last rule is checked. Since the last rule has

* in all the fields, the last rule is always satisfied. In this case,

the packet is discarded. Thus, the packet classification in Table

I can be considered as a five-field classification function.

Note that all the fields can be represented by intervals [7].

For example, an 8-bit address

1001****

can be represented by the interval

[9× 16, 9× 16 + 15] = [144, 159].

Also, a single value i.e 7 can be represented by the interval

[7, 7].

B. TCAM

A content addressable memory (CAM) simultaneously com-

pares the inputs vector with the entire list of registered vectors

[5]. TCAM is a de facto standard in routers and devices for

packet classification. Fig. 1 shows an example of a TCAM

circuit [8]. The search data is compared with the stored words.

When there is a match, the match line sends the signal to the

priority encoder to produce the match address.

To show the concept of a packet classification using a TCAM,

for simplicity, assume the packets are accepted when

(1 ≤ X ≤ 14),

where X = 8x3+4x2+2x1+x0. If multiple matches occur, the

priority encoder detects the match line with the smallest index.

In this example, the packet classification uses only one field

specified by four bits. The packet classifier can be implemented

as shown in Table II(a). Note that the condition for Accept can

be represented as

f = x̄3x̄2x̄1x0 ∨ x̄3x̄2x1 ∨ x̄3x2 ∨ x3x̄2 ∨ x3x2x̄1 ∨ x3x2x1x̄0.

The bottom word of the TCAM in Table II(a) consists of all

don’t cares. Thus, the TCAM requires 7 words.

*

*

*

1

*

1

*

1

1

0

0

0

0

1

1

0

0

0

0

1

Search Line Drivers

00

01

10

11

Search Data = 01010

Search Lines Match Lines

Priority Encoder

Sense Amps

Match

Match Match Address

01

Fig. 1. TCAM Circuit

TABLE II
PACKET CLASSIFIER BASED ON ACCEPT OR DISCARD CONDITION

(a) Accept

TCAM SRAM

0001 Accept

001* Accept

01** Accept

10** Accept

110* Accept

1110 Accept

**** Discard

(b) Discard

TCAM SRAM

0000 Discard

1111 Discard

**** Accept

Since, f can be simplified as

f = x̄3x2 ∨ x̄2x1 ∨ x̄1x0 ∨ x3x̄0,

the number of TCAM words can be reduced to five. However,

the complement of the function can be represented as

f̄ = x̄3x̄2x̄1x̄0 ∨ x3x2x1x0.

Thus, the circuit can be simplified by implementing the Discard

condition instead of the Accept conditions as shown in Table

II(b), which uses only three words. In this case, the entries

for the static random access memory (SRAM) also must be

modified.

Rules for packet classification are modified frequently, thus a

quick logic minimizer is desirable. Moreover, TCAMs dissipate

high power and are expensive. To overcome these problems, the

reduction of the number of words is crucial.

In this paper, we show a method to reduce the number of

words in a TCAM to represent k-field classification functions.

We use a head-tail expression to represent a multi-field classi-

fication function. Furthermore, we present an O(rk)-algorithm

called MFHT to generate simplified head-tail expressions for

k-field classification functions, where r is the number of

rules. Experimental results show that MFHT achieves a 58%

reduction of words for random rules, and a 52% reduction of

words for ACL and FW rules. Moreover, MFHT is fast and

useful for simplifying TCAM for packet classification.

II. DEFINITION AND BASIC PROPERTIES

A. Prefix Sum-of-Products

Definition 2.1: xi
ai denotes xi when ai = 1, and x̄i when

ai = 0. xi and x̄i are literals of a variable xi. The AND of

literals is a product. The OR of products is a sum-of-products

expression (SOP).

Definition 2.2: A prefix SOP (PreSOP) is an SOP consisting

of products having the form x∗n−1x
∗
n−2 . . . x

∗
m+1x

∗
m, where x∗i

is xi or x̄i and m ≤ n− 1.

Example 2.1: f(x2, x1, x0) = x̄2x̄1x0 ∨ x̄2x1 ∨ x2 is a

PreSOP. f(x2, x1, x0) = x0 ∨ x1 ∨ x2 is an SOP, for the same

function, but is not a PreSOP.

In general, an SOP requires fewer products than a PreSOP

to represent the same function [7]. However, in the internet

communication area, PreSOPs are used instead of SOPs, since

PreSOPs can be quickly generated from the binary decision

tree of the functions [13].

B. Interval Functions

Definition 2.3: Let A and B be integers such that A < B.

An open interval (A,B) denotes the set of integers X such

that A < X < B. Note that endpoints are not included. The

size of an open interval (A,B) is C = B −A− 1.

Definition 2.4: An n-input open interval function is

IN0(n : A,B) =

{

1, if A < X < B

0, otherwise.

An n-input greater-than (GT) function is

GT (n : A) =

{

1, if X > A

0, otherwise.

An n-input less-than (LT) function is

LT (n : B) =

{

1, if X < B

0, otherwise,

where X =
∑n−1

i=0 xi · 2
i, and A and B are integers.

Lemma 2.1: A GT function can be represented by the

PreSOP

GT (n : A) = xn−1ān−1 ∨

0
∨

i=n−2

i+1
∧

j=n−1

x
aj

j

xiāi,

where ~a = (an−1, an−2, · · · , a1, a0) is the binary representa-

tion of A. It has
∑n−1

i=0 āi disjoint products.

Example 2.2: Consider the case of n = 4 and A = 0. The bi-

nary representation of A is ~a = (0, 0, 0, 0). Thus, GT (4 : 0) =

x3 ∨
∨0

i=2

(

∧i+1
j=3 x̄j

)

xi = x3 ∨ x̄3x2 ∨ x̄3x̄2x1 ∨ x̄3x̄2x̄1x0.

Lemma 2.2: An LT function can be represented by the

PreSOP

LT (n : B) = x̄n−1bn−1 ∨
0
∨

i=n−2

i+1
∧

j=n−1

x
bj
j

 x̄ibi,

where ~b = (bn−1, bn−2, · · · , b1, b0) is the binary representation

of B. It has
∑n−1

i=0 bi disjoint products.

Theorem 2.1 [11]: Let ~a = (an−1, an−2, · · · , a1, a0) and
~b = (bn−1, bn−2, · · · , b1, b0) be the binary representations of

A and B, respectively, and A < B. Let t be the largest index

such that at−1 6= bt−1. Then, IN0(n : A,B) can be represented

by

0
∨

i=t−2

[

(i+1
∧

j=n−1

x
aj

j

)

xiāi ∨

(i+1
∧

j=n−1

x
bj
j

)

x̄ibi

]

.

The number of products is
∑t−2

i=0(āi + bi).
Proof: See the reference [11]. ✷

The optimality of GT (n : A), LT (n : B), and IN0(n :
A,B) functions represented by PreSOPs has been discussed in

the reference [11].

Example 2.3: Let A = 0 and B = 15. The binary representa-

tions of A and B are ~a = (0, 0, 0, 0) and~b = (1, 1, 1, 1), respec-

tively. Thus, by Theorem 2.1, the PreSOP for IN0(4 : 0, 15)
is x̄3x2 ∨ x̄3x̄2x1 ∨ x̄3x̄2x̄1x0 ∨ x3x̄2 ∨ x3x2x̄1 ∨ x3x2x1x̄0.

Table II(a) shows the PreSOP realization of IN0(4 : 0, 15).

C. Classification Functions

Definition 2.5 [7]: A classification function with k fields is

a mapping F : P1 × P2 × · · · × Pk → {0, 1, 2, · · · , r}, where

Pi = {0, 1, · · · , 2ti − 1} (i = 1, 2, · · · , k). F is specified by

a set of r rules. A rule consists of k fields, and each field is

specified by an interval of t bits.

III. TCAM SIMPLIFICATION

A. Head-Tail Expression for Interval Functions

First, we use head-tail expressions (HTs) to efficiently repre-

sent interval functions [10]. We use HTs that were introduced

to design NAND networks [3].

Definition 3.1: A head-tail expression has a form

f =

0
∨

i=t

[

s
∧

j=0

(h̄ij)

][

v
∧

k=0

(gik)

]

, (1)

where for (i = 0, 1, · · · , t), (h̄ij) is the head factor and (gik)
is the tail factor and hij and gik are represented by products.

In this paper, (product) and (product) are called factors.

Example 3.1: (x2x1x0) ·(x̄2x1x0) ·(x4x3)∨(x2x̄1) ·(x̄2x1) ·
(x̄4x̄3) is a head-tail expression.

Section II-B showed that the number of products in a PreSOP

for IN0 function is
∑t−2

i=0(āi + bi). Thus, in the worst case,

an IN0 function requires 2(n − 1) products. However, by a

head-tail expression, we often can represent the function with

fewer TCAM words (factors) compared to that of in a PreSOP.

Lemma 3.1: An arbitrary interval function f can be repre-

sented by a head-tail expression Eq. (1).

Theorem 3.1 [10]: Let ~a = (an−1, an−2, · · · , a1, a0) be the

binary representation of an integer A. Let cp−1, cp−2, · · · , c1, c0
be the starting indexes of consecutive 0’s groups in ~a, where

cp−1 > cp−2 > · · · > c1 > c0. Let the isolated 1’s be

acp−2+1 = acp−3+1 = · · · = ac1+1 = ac0+1 = 1, where ck + 1

is the index of isolated 1’s among groups of consecutive 0’s in

~a. Then, the GT (n : A) function can be represented by p+ 1
factors:

c0+1
∧

j=n−1

x
aj

j

c0+1−d0
∧

i=c0

x̄i

 ·

c1+1
∧

j=n−1

x
aj

j

c1−d1
∧

i=c1

x̄i

 · · ·

·

cp−1+1
∧

j=n−1

x
aj

j

cp−1−dp−1
∧

i=cp−1

x̄i

 ·

cp−1+1
∧

j=n−1

x
aj

j

 ,

where dp−1, dp−2, · · · , d1, d0 (for i = 0, 1, · · · , p− 1, di > 0)

are numbers of consecutive 0’s in the groups which start from

the indexes cp−1, cp−2, · · · , c1, c0, respectively. Note that, in ~a,

except for the group of consecutive 0’s, remaining bits are 1’s.

Proof: See Appendix. ✷

Example 3.2: Let A = 0. The binary representation of A

is ~a = (0, 0, 0, 0). By Theorem 3.1, we have a group of

consecutive 0’s, where n = 4, p = 1, cp−1 = c0 = 3 and

d0 = 4. Thus,

GT (4 : 0) =

c0+1
∧

j=n−1

x
aj

j

c0+1−d0
∧

i=c0

x̄i

 ·

c0+1
∧

j=n−1

x
aj

j

= (x̄3x̄2x̄1x̄0) · (1),

where the number of factors is p+ 1 = 2.

Theorem 3.2 [10]: Let ~b = (bn−1, bn−2, · · · , b1, b0)
be the binary representation of an integer B. Let

cp−1, cp−2, · · · , c1, c0 be the starting indexes of consecutive

1’s groups in ~b, where cp−1 > cp−2 > · · · > c1 > c0. Let the

isolated 0’s be bcp−2+1 = bcp−3+1 = · · · = bc1+1 = bc0+1 = 0,

where ck + 1 is the index of isolated 0’s among groups

of consecutive 1’s in ~b. In this case, LT (n : B) can be

represented by p+ 1 factors:

c0+1
∧

j=n−1

x
bj
j

c0+1−d0
∧

i=c0

xi

 ·

c1+1
∧

j=n−1

x
bj
j

c1−d1
∧

i=c1

xi

 · · ·

·

cp−1+1
∧

j=n−1

x
bj
j

cp−1−dp−1
∧

i=cp−1

xi

 ·

cp−1+1
∧

j=n−1

x
bj
j

 ,

where dp−1, dp−2, · · · , d1, d0 (for i = 0, 1, · · · , p− 1, di > 0)

are numbers of consecutive 1’s in the groups which start from

the indexes cp−1, cp−2, · · · , c1, c0, respectively. Note that, in ~b,

except for the group of consecutive 1’s, remaining bits are 0’s.

Proof: See Appendix. ✷

Example 3.3: Let B = 15. The binary representation of

B is ~b = (1, 1, 1, 1). By Theorem 3.2, we have a group of

consecutive 1’s where p = 1, cp−1 = c0 = 3 and d0 = 4.

Thus,

LT (4 : 15) =

c0+1
∧

j=n−1

x
bj
j

c0+1−d0
∧

i=c0

xi

 ·

c0+1
∧

j=n−1

x
bj
j

= (x3x2x1x0) · (1).

Thus, IN0(4 : 0, 15) can be represented by:

GT (4 : 0) · LT (4 : 15) = (x̄3x̄2x̄1x̄0) · (x3x2x1x0) · (1).

Table II(b) shows the head-tail expression realization of IN0(4 :
0, 15). The first factor (x̄3x̄2x̄1x̄0) corresponds to the first

word, the second factor (x3x2x1x0) corresponds to the second

word, and the last factor (1) corresponds to the last word in

Table II(b).

B. Simplification of TCAM for Multi-Field Classification Func-

tions

In this subsection, we present a method to reduce TCAM

words for multi-field classification functions. We show that a

multi-field classification function is represented by head-tail

expressions, and they can be reduced by the absorption law.

Property 3.1: A PreSOP for a multi-field classification func-

tion cannot be reduced by the absorption law.

On the other hand, we can generate a simplified head-tail

expression for some multi-field classification functions directly

as follows:

TABLE III
TCAM WORDS FOR EXAMPLE 3.4

Field f1 Field f2 Results

PreSOP PreSOP Products

[0, 2] [0, 10]
10 → 1 1010 → 1 101010 → 1

0* → 1 100* → 1 10100* → 1

0*** → 1 100*** → 1

0*1010 → 1

0*100* → 1

0*0*** → 1

****** → 0

Head-Tail Expr. Head-Tail Expr. Factors

[0, 2] [0, 10]
11 → 0 1011 → 0 ✭

✭
✭
✭

111011 → 0

** → 1 11** → 0 ✭
✭
✭
✭

1111** → 0

**** → 1 11**** → 0

**1011 → 0

11 → 0

****** → 1

Example 3.4: Consider the rule of a two-field classification

function F = f1·f2, where f1 and f2 represent intervals [0, 2] =
(−1, 3) and [0, 10] = (−1, 11), respectively. In this case, by

Theorem 2.1 or Lemma 2.2, their PreSOPs are

f1 = IN0(2 : −1, 3) = LT (2 : 3)

= x1x̄0 ∨ x̄1

f2 = IN0(4 : −1, 11) = LT (4 : 11)

= x3x̄2x1x̄0 ∨ x3x̄2x̄1 ∨ x̄3.

The intersection of these PreSOPs produce a TCAM with 7

words (a 6-product PreSOP and a universal product that makes

the rest values 0’s), which are shown in the upper group of

rows in Table III. In this case, the action value 1 corresponds

to Accept, while the action value 0 corresponds to Discard.

Furthermore, Fig. 2(a) shows the map.

11 11 11

11 11 11

11 11

11 11 11

00

11

22

33

44

55

66

77

1212

1313

1414

1515

88

99

1010

1111

X0

X1

X2

11 11 11

11 11 11

11 11

11 11 11

2424

2525

2626

2727

2828

2929

3030

3131

2020

2121

2222

2323

1616

1717

1818

1919

X2

X3 X3

X4

11 11 11

11 11

11 11 11

11 11 11

3434

3535

3232

3333

3838

3939

3636

3737

4646

4747

4444

4545

4242

4343

4040

4141

5858

5959

5656

5757

6262

6363

6060

6161

5454

5555

5252

5353

5050

5151

4848

4949

X0

X1

X5

TCAM Priority

Encoder

1 0 1

x5

0 1 0 1

x4 x3 x2 x1 x0

1 0 1 0 0 * 1

1 0 0 * * * 1

* * * * * * 0

0 * 1 0 1 0 1

0 * 1 0 0 * 1

0 * 0 * * * 1

(a) PreSOP

00

00

00 00

00

00

11

22

33

44

55

66

77

1212

1313

1414

1515

88

99

1010

1111

X0

X1

X2

00

00

00 00

00

2424

2525

2626

2727

2828

2929

3030

3131

2020

2121

2222

2323

1616

1717

1818

1919

X2

X3 X3

X4

00

00 00

00

00

3434

3535

3232

3333

3838

3939

3636

3737

4646

4747

4444

4545

4242

4343

4040

4141

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

5858

5959

5656

5757

6262

6363

6060

6161

5454

5555

5252

5353

5050

5151

4848

4949

X0

X1

X5

TCAM Priority

Encoder

1 1 *

x5

* * * 0

x4 x3 x2 x1 x0

* * 1 0 1 1 0

* * 1 1 * * 0

* * * * * * 1

(b) Head-Tail Expression

Fig. 2. Maps for two-field classification rule

However, if we represent these functions by head-tail expres-

sions (Theorem 3.2), we have

f1 = IN0(2 : −1, 3) = LT (2 : 3) (2)

= (x1x0) · (1)

f2 = IN0(4 : −1, 11) = LT (4 : 11) (3)

= (x3x̄2x1x0) · (x3x2) · (1)

If we obtain the intersection of f1 and f2 in Table III, we have

6 words, which are shown by the lower group of rows in Table

III.

Furthermore, we can generate the simplified expression di-

rectly from Eq. (2) and Eq. (3)

F = f1 · f2 = (x5x4) · (x3x̄2x1x0) · (x3x2) · (1).

Note that to perform the intersection operation between f1 and

f2, we have to increase the indexes of variable of factors in

f1 by four (the number of variable in f2). The final TCAM

requires only p1 + p2 + 1 = 1 + 2 + 1 = 4 words as shown in

Fig. 2(b), where p1 + 1 and p2 + 1 are the number of words

for of the head-tail expressions in f1 and f2, respectively.

Since the application of the absorption law is time-

consuming, we generate simplified expressions directly.

IV. ALGORITHM TO GENERATE SIMPLIFIED EXPR. FOR

MULTI-FIELD CLASSIFICATION FUNCTIONS

In this section, we present an algorithm to generate simpli-

fied expressions for multi-field classification functions called

MFHT. For one-field and two-field classification functions,

methods using dynamic programming have been proposed in

[9].

Fig. 3 shows the pseudocode for MFHT for two-field classi-

fication function. In this algorithm, head-tail expressions are

detected, and a simplified expression is generated directly.

The inputs are {ListF1, Act1} and {ListF2, Act2}, while the

output is {ListOut,ActOut}. ListF1 and ListF2 consists

of the factors (products) of head-tail expressions (PreSOPs)

for f1 and f2, respectively. τ1 and τ2 denote the number of

factors (products) in ListF1 and ListF2, respectively. First,

each action in Act1 is checked. If Act1[i] is 1, then a disjoint or

a PreSOP product is detected. Therefore, ListF1[i] and all the

factors in ListF2 are concatenated. In Fig. 3, the concatenation

operation is denoted by ◦. Otherwise, a head-tail expression

in ListF1[i] is detected. In this case, if a disjoint/PreSOP

product is detected in ListF2[j], then all the factors in head-

tail expression for ListF1[i] are concatenated to ListF2[j].
size(ListF1[i]) denotes the number of factors for the head-

tail expression. Lastly, if in both ListF1[i] and ListF2[j]
are detected as the head-tail expressions, then the simplified

expression is directly generated. Fig. 3 shows that the time

complexity of the algorithm is τ1τ2 steps or O(r2). After

checking ListF1[i], all factors in ListF2 are concatenated with

ListF1[i].

Consider the case, where the function has three fields. Let the

number of reduced factors be τ ′1 where the reduced factors are

the outputs produced by applying MFHT in ListF1 and ListF2

resulting ListOut, and ListF3 stores all factors representing

f3. In this case, we can compute the factors of the function

by replacing the data as follows: ListF1 ← ListOut, and

ListF2 ← ListF3. Then, for reducing the third factors, it

costs at most τ ′1τ3 steps or O(r2) · r ≈ O(r3). This shows that

the complexity of MFHT for k-field classification functions is

O(rk).

TABLE IV
TCAM WORDS FOR EXAMPLE 4.1

(a) TCAM for Each Field

HT of f1 HT of f2

Hsa 0000 → 0 Hs 0000 → 0

1111 → 0 1111 → 0

Tb **** → 1 T **** → 1

(b) Simplified
TCAM for F

F = f1 · f2

Hs 0000**** → 0

1111**** → 0

****0000 → 0

****1111 → 0

T ******** → 1

aHs: Head Factors
bT: Tail Factor

MFHT for two-field classification function:

/∗ Input: {ListF1 , Act1} and {ListF2 , Act2} that store all the factors and actions

for f1 and f2 , respectively. ∗/
/∗ Output: {ListOut, ActOut}, concatenated and reduced factors and actions rep-

resented by head(H)-tail(T) expressions (HTs) and disjoint products with the total

number of factors τ . ∗/
1: Let τ1 be the number of factors in ListF1 , and τ2 be the number of factors in

ListF2 .

2: τ ← 0.

3: for i = 0; i < τ1; i + + do

4: if Act1[i] == 1 then

/∗ ListF1[i] is a disjoint/PreSOP product. ∗/
5: for j = 0; j < τ2; j + + do

6: ListOut[τ]← ListF1[i] ◦ ListF2[j].
7: ActOut[τ]← Act2[j].
8: τ ← τ + 1.

9: end for

10: else

/∗ An HT is detected in ListF1[i]. ∗/
11: for j = 0; j < τ2; j + + do

12: if Act2[j] == 1 then

/∗ ListF2[j] is a disjoint/PreSOP product. ∗/
13: ListOut[τ]← (HT of ListF1[i]) ◦ ListF2[j].
14: ActOut[τ]← Act1[i].
15: τ ← τ + size(ListF1[i]).

16: else

/∗ HTs are detected in ListF1[i] and ListF2[j]. Generate simplified

expression from ListF1[i] and ListF2[j]: ∗/
17: ListOut[τ]← (Hs of ListF1[i]) ◦ (T of ListF2[j]).

18: ActOut[τ]← 0.

19: τ ← τ + size(ListF1[i])− 1.

20: ListOut[τ]← (T of ListF1[i]) ◦ (Hs of ListF2[j]).

21: ActOut[τ]← 0.

22: τ ← τ + size(ListF2[j])− 1.

23: ListOut[τ]← (T of ListF1[i]) ◦ (T of ListF2[j]).

24: ActOut[τ]← 1.

25: τ ← τ + 1.

26: end if

27: end for

28: end if

29: end for

30: Terminate.

Fig. 3. Pseudocode for MFHT

Example 4.1: Consider the rule of the two-field classification

function F = f1 · f2, where both f1 and f2 represent (0, 15),
and they are defined by 4-bit numbers. From Example 3.3, we

have the head-tail expressions for f1 and f2, and their TCAM

representations as shown in Table IV(a).

First, the first action of the factors in f1 (Act1[0]) is checked.

Since the value of Act1[0] is 0 (line 4 of Fig. 3), a head-

tail expression is detected in f1. Next, the first action of the

factors in f2 (Act2[0]) is checked. A head-tail expression is

also detected in f2. Thus, we generate the simplified expression

directly: 1) concatenate the head factors (Hs) of f1 and the tail

factor (T) of f2, 2) concatenate T of f2 and Hs of f1, and 3)

concatenate T of f1 and f2. We have the simplified TCAM for

F with 5 words as shown in Table IV(b).

To assess the effectiveness of MFHT, we also compare

MFHT to an algorithm called single-field head-tail generator

(SFHT) [10] where each field is represented by head-tail ex-

pressions and no simplification is performed among the fields.

If SFHT is applied instead of MFHT, F requires 3 × 3 = 9
words. Moreover, if we represent both of the fields by PreSOPs,

from Example 2.3, we have 6 products for each field and the

TCAM for F requires 6× 6 + 1 = 37 words.

V. EXPERIMENTAL RESULTS

Since the data for access control list (ACL) and firewall (FW)

are confidential in nature, no benchmark data are available

for packet classifications. ClassBench is software to generate

benchmark data for evaluation [12]. First, we generated a five-

field random classification function by ClassBench, where the

two fields (source port and destination port) are represented

by intervals. We also develop an algorithm PreSOPG to gen-

erate expression, where each field is PreSOP [11]. Table V

shows that, the SFHT achieved 47.76% reduction, while MFHT

achieved 57.85% reduction over PreSOPG for random rules.

TABLE V
NUMBER OF TCAM WORDS FOR RANDOM RULES

#Rules PreSOPG SFHT MFHT

50000 9791417 (100%) 5114996 (52.24%) 4127403 (42.15%)

Next, we generated five-field ACL and FW functions shown

in Table VI, by ClassBench. In ACL functions, the source port

has only the trivial interval [0, 65535] (which has the size of

the interval C = 65534). Because the source port field can

be represented without a literal, the MFHT produced the same

solutions as SFHT. In FW functions where both source and

destination ports have non-trivial intervals, MFHT produces

solutions with fewer factors than SFHT. MFHT achieved 52%

reduction for ACL and FW rules over PreSOPG.

In these experiments, we generated 50000 rules to see the

run time of the algorithms. In practice, the numbers of rules

are between 100 until 41000 rules depend on applications [4],

[9].

TABLE VI
NUMBER OF TCAM WORDS FOR ACL AND FW RULES

Data #Rules #DISa #DIPb PreSOPG SFHT MFHT

Words Words Words

ACL1 49910 1 35 68426 63880 63880

ACL2 48461 1 3 98139 55651 55651

ACL3 49894 1 38 95577 63585 63585

ACL4 49633 1 52 89214 62015 62015

ACL5 39039 1 5 51825 43797 43797

FW1 48442 3 3 167002 59766 56588

FW2 49313 2 1 96723 58795 58795

FW3 47275 3 3 136045 55653 53234

FW4 46774 6 6 313330 84038 79684

FW5 46847 3 4 110542 54074 52343

Total 1226823 601254 589572

Ratio 100% 49% 48.05%

aDIS: Distinct Intervals in Source Port (C > 1).
bDIP: Distinct Intervals in Dest. Port (C > 1).

We also compared the execution times of PreSOPG, SFHT,

and MFHT for classification functions with r = 10000 to

50000 ACL and FW rules. In this case, we generated rules by

setting the variable <number of filter> to 10000, 25000, and

50000 in the ClassBench program. Fig. 4 shows CPU time in

millisecond. This shows that the execution times of SFHT and

MFHT are close. But, when the number of rules increases, the

CPU time for MFHT grows faster than SFHT because MFHT

generates simplified expression for multi-field classification

0

10

20

30

40

50

60

0 10000 20000 30000 40000 50000 60000

T
im

e
 (

m
s)

Number of Rules

PreSOPG

SFHT

MFHT

Fig. 4. Comparison of execution times for PreSOPG, SFHT, and MFHT in
millisecond

functions (O(r2)). Moreover, the average execution time to

simplify a single rule for MFHT is nearly 1 microsecond. In

the experiments, we used an 2 GHz Intel Core i7 with 8 GB

memory and 64 bits OS-X.

0

1000

2000

3000

4000

5000

6000

7000

0 10000 20000 30000 40000 50000 60000

T
im

e
 (

m
s)

Number of Rules

MFHT

Ref. [9]

Fig. 5. Comparison of execution times for MFHT and Ref. [9] in millisecond

Last, we compared the execution time of MFHT (as in Fig.

4) and the execution time of dynamic programming algorithm

represented in [9]. The method [9] using dynamic programming

produced expressions with the same number of words as

MFHT. The algorithm [9] runs in O(rwn2) worst case time,

where r is the number of rules, w is the number of actions, and

n is the number of bits. Furthermore, in Fig. 5, we can see that

MFHT is much faster (100 times) than the algorithm in [9].

VI. CONCLUSION

In this paper, we presented a method to reduce the number

of factors in a head-tail expression for multi-field classification

functions. We derived the PreSOP and the head-tail expression

for a rule of a multi-field classification function. Furthermore,

we presented an algorithm to generate simplified expressions

for multi-field classification functions. Experimental results

show that MFHT achieved 58% reduction over PreSOPG for

random rules, and 52% reduction for ACL and FW rules.

Moreover, MFHT is more than 100 times faster than that of

the reference [9].

ACKNOWLEDGMENTS

This work is partially supported by the Japan Society for

the Promotion of Science (JSPS), Grant in Aid for Scientific

Research, and by the Adaptable and Seamless Technology

Transfer Program through target-driven R&D, JST.

APPENDIX

Lemma A.1: Greater-than (GT) or less-than (LT) functions

can be represented by a head-tail expression:

p−1
∨

i=0

(h̄i)(gi)

where p ≤ n.

Lemma A.2: Let ~a = (an−1, an−2, · · · , a1, a0) be the binary

representation of integer A. When am−1 = am−2 = · · · =
am−d = 0 and other bits are 1’s, the GT function can be

represented by a head-tail expression with two factors:

GT (n : A) =

m
∧

j=n−1

x
aj

j

m−d
∧

i=m−1

x̄i

 ·

m
∧

j=n−1

x
aj

j

 ,

where d is the number of consecutive 0’s in ~a and d > 0.

Lemma A.3: If h0 ⊂ g0 ⊂ h1 ⊂ g1 ⊂ · · · ⊂ hp−2 ⊂ gp−2 ⊂
hp−1 ⊂ gp−1, then Z = g0h̄0 ∨ g1h̄1 ∨ · · · ∨ gp−2h̄p−2 ∨
gp−1h̄p−1 is represented by:

Z = h̄0(h̄1 ∨ g0)(h̄2 ∨ g1)

· · · (h̄p−2 ∨ gp−3)(h̄p−1 ∨ gp−2)gp−1

h0

g0

h1

g1

hp-2

gp-2

hp-1

gp-1

.
.
.

.
.
.

Fig. 6. Map for Lemma A.3

Proof: The grey area in the map of Fig. 6 indicates the

covering of Z . Thus, we have the lemma. ✷

Proof of Theorem 3.1: Lemma A.1 and Lemma A.2 are used

to represent p terms of head-tail expressions. Each group of

consecutive 0’s in ~a can be represented by:

h̄0g0 =

c0+1
∧

j=n−1

x
aj

j

c0+1−d0
∧

i=c0

x̄i

 ·

c0+1
∧

j=n−1

x
aj

j

· · ·

h̄p−1gp−1 =

cp−1+1
∧

j=n−1

x
aj

j

cp−1+1−dp−1
∧

i=cp−1

x̄i

 ·

cp−1+1
∧

j=n−1

x
aj

j

 .

The number of required factors is 2p. Since the starting index

of a group of consecutive 0’s is ck, the relation between m in

Lemma A.2 and ck is m = ck + 1 and m− dk = ck + 1− dk.

Moreover, the index of isolated 1 satisfies the relation ck−dk =
ck−1 + 1. Thus, we have x

ack−dk

ck−dk
= x

ack−1+1

ck−1+1 = xck−dk
=

xck−1+1, where the binary representation of A is:

~a = (· · · ,

ack
↓

0 , 0, · · · ,

ack+1−dk
↓

0 ,

ack−dk
=ack−1+1

↓

1 ,

ack−1

↓

0 , 0, · · ·)

Therefore, h̄k ∨ gk−1 can be combined to a factor:

h̄k ∨ gk−1 =

ck+1
∧

j=n−1

x
aj

j

ck+1−dk
∧

i=ck

x̄i

 ∨

ck−1+1
∧

j=n−1

x
aj

j

=

ck+1
∧

j=n−1

x
aj

j

ck+1−dk−1
∧

i=ck

x̄i

∨

ck+1
∧

j=n−1

x
aj

j

ck+1−dk
∧

i=ck

x̄i

 · xck−1+1

=

ck+1
∧

j=n−1

x
aj

j

ck+1−dk−1
∧

i=ck

x̄i

 ∨ xck−1+1

=

ck+1
∧

j=n−1

x
aj

j

ck+1−dk
∧

i=ck

x̄i

 ∨ xck−dk

=

ck+1
∧

j=n−1

x
aj

j

ck−dk
∧

i=ck

x̄i

 ,

by applying Lemma A.3, 2p factors can be reduced to only

p+ 1 factors. Thus, we have the theorem. ✷

The proof of Theorem 3.2 is similar to that of Theorem 3.1.

REFERENCES

[1] F. Baboescu and G. Varghese, “Scalable packet classification,” IEEE/ACM

TON, vol.13, no.1, pp. 2-14, Feb. 2005.
[2] R. K. Brayton, et al., Logic Minimization Algorithms for VLSI Synthesis,

Kluwer, 1984.
[3] J. F. Gimpel, “The minimization of TANT networks,” IEEE Transactions

on Electronic Computers, vol. 16, no. 1, pp. 18-38, Feb. 1967.
[4] R. McGeer and P. Yalagandula, “Minimizing rulesets for TCAM imple-

mentation,” INFOCOM, pp. 1314-1322, 2009.
[5] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory

(CAM) circuits and architectures: A tutorial and survey,” IEEE JSSC,
vol. 41, No. 3, pp. 712-727, March 2006.

[6] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic
Publishers, 1999.

[7] T. Sasao, “On the complexity of classification functions,” ISMVL 2008,
pp. 57-63, May 2008.

[8] T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.
[9] S. Suri, T. Sandholm, and P. Warkhede, “Compressing two-dimensional

routing tables,” Algorithmica, 35(4), 287-300, 2003.
[10] I. Syafalni and T. Sasao, “A Fast Head-Tail Expression Generator for

TCAM–Application to Packet Classification,” ISVLSI, August 2012.
[11] I. Syafalni and T. Sasao, “On the numbers of products in prefix SOPs for

interval functions,” IEICE Transaction on Information and System, vol.
E96-D, no 55, pp. 1086-1094, May 2013.

[12] D. E. Taylor, J. S. Turner, “ClassBench: a packet classification bench-
mark,” IEEE/ACM TON, vol. 3, no. 15, pp. 499-511, 2007.

[13] D. E. Taylor, “Survey and taxonomy of packet classification techniques,”
ACM Computing Surveys, vol. 37, no. 3, pp. 238-275, 2005.

