Realization of Multiple-Output Functions by Reconfigurable Cascades

Yukihiro IGUCHI!,

Tsutomu SASAQO?3,

and Munehiro MATSUURA?

! Department of Computer Science, Meiji University

*Department of Computer Science and Electronics, Kyushu Institute of Technology
3Center for Microelectronic Systems, Kyushu Institute of Technology

Abstract

A realization of multiple-output logic functions using a
RAM and a sequencer is presented. First, a multiple-output
function is represented by an encoded characteristic func-
tion for non-zeros (ECFN). Then, it isrepresented by a cas-
cade of look-up tables (LUTs). And finally, the cascade is
simulated by a RAM and a sequencer. Multiple-output func-
tions for benchmark functions are realized by cascades of
LUTSs, and the number of LUTs and levels of cascades are
shown. A partition method of outputs for parallel evalua-
tion is also presented. A prototype has been developed by
using RAM and FPGA. This realization uses time domain
multiplexing, and is useful for the case where the number of
output pinsis limited.

1 Introduction

Two of the most crucia problems in system LSIs are
their long design time and short life cycles. A solution to
these problems may be reconfigurable architecture. Recon-
figurable LSIs will reduce the hardware development time
drastically, since one LS| can be used for various applica-
tions.

In this paper, we consider a realization of combina-
tional logic functions by reconfigurable architecture. Var-
ious methods exist to realize multiple-output logic func-
tions by reconfigurable architecture. Among them, random
access memories (RAMs) and programmable logic arrays
(PLAS) directly implement logic functions. However, when
the number of input variables n islarge, the necessary hard-
ware becomes too large. Thus, field programmable logic
arrays (FPGAS) are often used. Unfortunately, FPGAS re-
quire layout and routing in addition to logic design. Also,
the area for programming and interconnections are much
larger than the logic area. Thus, FPGAS require large chip
area.

When speed of the operation is not so important, a
general-purpose microprocessor can be used to implement
logic functions. However, the microprocessor implementa-
tion is often 100 to 1000 times slower than the direct circuit
realizations. Also, the power dissipation is rather high.

Here, we assume the following applications:

¢ The system need not be so fast as custom logic circuits,
but must be faster than the software realization.

e The system is too large to implement by a PLA or a
RAM directly.

e System must be reconfigurable.
In this paper, we consider a method to implement logic

functions by using sequentia network, where the speed
must be faster than the conventional software realization.

vg: if(zy == 0) goto vy;
else goto vs;

vy: if(z2 == 0) goto vs;
else goto vy;

vy: if(x3 == 0) goto vs;
else goto vy;

vz return(0);

vq: return(l);

(b)

Figure 1.1: Branching program method.

First, to make the problem simple, let us consider the real-
ization of single-output logic function of n variables.

The branching program method realizes a logic function
by a sequential network as follows[1]:

1) Represent the given logic function by abinary decision
diagram (BDD) [11, 4] (Fig. 1.1(8)).

2) Replace each non-terminal node of the BDD with an
“If then else” statement, and derive the branching pro-
gram to represent f (Fig. 1.1(b)).

3) Implement the program by a general-purpose micro-
processor.

Note that the branching program method requires O(n)
computation time. To reduce the instruction fetch time, spe-
cial sequential machines that traverse the BDD structure are
proposed [20, 6]. In this case, the necessary memory is pro-
portional to the number of nodesin the BDD.

If & variables are evaluated at the same time, then the
evaluation speed will be & times faster than the branching
program method. This corresponds to using a multiple-
valued decision diagram (MDD) instead of aBDD [12, 8].

If we partition the BDD into several pages, and operate
each page in parallel, then we have the pipelined architec-
ture[8], which is several timesfaster than the naive realiza-
tion.

In this paper, we propose the LUT cascade method,
which uses lookup tables (LUTS) as basic logic elements.
In this method, a cascade of LUTs is used to implement
logic functions, which makes the sequencer simple enough
to be implemented by a reconfigurable network. Also, with
more memory, we can design a faster system.

In the branching program method, the number of mem-
ory references is proportiona to the number of input vari-
ables. On the other hand, in the LUT cascade method, the

Table 1.1: Comparison of Reconfigurable Realizations for
Multiple-output Functions.

Performance | Design time | Chip area
FPGA method High Long Large
LUT cascade method| Medium Medium | Medium
Branching program Low Short Small
method

Table 2.1: Decomposition chart.

X1 = (21, 22)
0011
0101
Yoo (esen) 011119
2T 50110
11/000 0

number of memory referencesisequal to the number of lev-
els of the cascade. Experimental results show that the num-
ber of levels of the cascade is about one tenth of the num-
bers of the input variables. Thus, the we can expect that the
LUT cascade method will be about ten times faster than the
branching program method.

As for the amount of memory, branching program
method requires memory that is proportional to the number
of nodesin the BDD. On the other hand, the LUT cascade
method requires more memory than the branching program
method.

Table 1.1 compares these methods.

2 Cascade Realization of Logic Functions

In this part, we will show amethod to implement alogic
function by acascade of LUTSs.

Definition 2.1 Let X = (z1,%2,...,2,) be input vari-
ables. A set of variables X is denoted by {X}. X =
(X1, X2) isapartition of X if {X;} U{X2} = {X} and
{X1}n{X2} = ¢. Thenumber of variablesin X isdenoted
by | X|.

Definition 2.2 For a logic function f(X), let X =
(X1,X>) be a partition of X. The decomposition chart
of f, denoted by M (f : X1, X5), isthe matrix having 2™
columns and 2”2 rows. In M (f : X1, X2), each row and
column has label with binary number, and the correspond-
ing element denotes the truth value of f, where ny = | X/ |
and ny = |X5|. The columns and rows have all possible
patterns of n; bitsand n, bits, respectively.

Example2.1 Let f(X) bea4-variablefunction, and X =
(X1, X2) be a partition of X, where X; = (x,22) and
Xy = (23, 24). Table 2.1 isan example of a decomposition
chart. (End of Example)

Definition 2.3 The number of different column patternsin
a decomposition chart is the column multiplicity, and is
denoted by .

X
b b

u
) - f

—

Figure 2.1: Functional Decomposition.

Figure 2.2: Functional decomposition using BDD.

The column multiplicity of a decomposition chart depends
on the partition X = (X, X») of theinput variables.

Lemma 2.1 [2, 5] Let the partition of X be (X3, X3). If
the column multiplicity of the decomposition chart M (f :
X1, X2) for afunction f is y, then f can be represented as
f(X) = g(h1(X1), ho(Xy), ..., hu(X1), X5), and f can
be realizable with the network structure shown in Fig. 2.1,
where u = [log, ¢t]. X isthe bound set.

Lemma 2.2 [10, 15] Let (X, X2) beapartition of X, and
let the BDD of the function f be partitioned as shown in
Fig. 2.2. Suppose that £ nodes in the lower block are adja-
cent to the upper block. Also, let the column multiplicity of
the decomposition chart M (f : X3, X) for the function f
be i Then, pn = k.

Definition 2.4 [13] Thewidth of the BDD at level & isthe
number of edges crossing the section of the graph between
z and zx 11, where the edges pointing to the same nodes
are counted as one. The width of the BDD is the maximum
width of the BDD among the levels.

Theorem 2.1 Consider a BDD for an n-variable logic
function f. Let the width of the BDD be p4s. If u =
[logs ftmaz | < k — 1, then f can be realized by a cascade
of k-LUTsshownin Fig. 2.3. Let s be the numbers of levels

of the cascade, and N be the number of LUTS, then we have
{n +u—2
k—1

n—u-—1

k—u]
n+u—2 n—u—1
o e ts sl
Theorem 2.2 Let s be the number of levels of the cascade
in Fig. 2.3. Then, we have

1< s <14]

Ju+1

s—1
a—1 1
- 7,whereu = ;.

o | b 5—1;“

n—1u n—

(] < s <14

X1 X2 Xs1 Xs
il Wyl W Uso 1) Ust 1]

7Y 7Y 7Y

g .~ 1 gLt

Figure 2.3: The network obtained by applying functional
decompositions s — 1 times.

u; = [log, u;] and y; is the column multiplicity for the
decomposition of f, where X; U X, U---U X; isthebound
Set.

Theorem 2.2 givestighter bounds on s than Theorem 2.1.
Since « is hard to obtain, we approximate it by the average
value of the logarithm of the widths of al the levelsin the
BDD. From these relations, we can easily estimate the num-
ber of LUTs and the level of the cascade.

3 Representation of Multiple-output Func-
tion

Although the method described in the previous section
is useful for a single-output function, it is hard to apply to
multiple-output functions. In the case of an m-output func-
tion, the number of terminal nodes of the MTBDD [16] can
be as much as 2™, which may be too large to construct.
Also, the representations using characteristic function (CF)
of multiple-output function have been developed [1]. How-
ever, in many cases, BDDs for CFs are too large to con-
struct. From this, we use the following method to represent
amultiple-output function.

Definition 3.1 [19] Let m functions be f; (j =
0,1,...,m —1). The encoded characteristic function for
non-zero outputs (ECFN) is

w—1
wlbw2 bg
ECFN = \/ Zw—1RFw—2 " %0 fja
7=0

where b = (by—1,bw—s, ..., bo) is the binary representa-
tion of theinteger j, and w = [log, m].

Note that 20,21y -+,
represent the outputs.

zw—1 are auxiliary variables that

Example 3.1 Consider the case of m = 8. Let zg, 21,
and z, be the auxiliary variables that represent output
groups. In this case, the ECFN of the 8-output function
(anfla .. 'af7) IS

BECFN = ZoZ1ZofoVazizofiV ZeziZofa V Zaz120fa V

29Z1Z0fa V zaZ120f5 V 2az1Z0f6 V 222120 f7
(End of Example)

An ECFN is an (n + w)-input single-output function that
represents an n-input m-output function by time domain
multiplexing. When constructing a BDD for an ECFN, we
can reduce the size of the BDD by mixing the auxiliary vari-
ables and ordinary input variables. We can aso reduce the
sizes of BDDs by considering the encoding methods [19].

Input Reg MAR
E % Memory

Control

MBR

Output Reg

Figure 5.1: Architecture for Logic Simulator.

4 Level Reduction by Output Partition

To evaluate an m-output function by using the network
for the ECFN, we have to iterate logic evaluation m times
by changing the values of the auxiliary variables. Thus,
when m is large, the evaluation time tends to be long. To
solve this difficulty, we use a parallel process to make it
faster:

To represent a multiple-output logic function 7 =
{fo,f1,.- -, fm—-1}, patition the output set F into
fl,}",.. ,Fr, where 7, U Fo U --- U F, = F, and
FiNF; = ¢ (i # j). And, we can reduce the levels of
the castade. Let i be the width of the BDD representing
the ECFN for F;. Clearly, y; < . Partitioning the outputs
F will often reduce the number of input variables and ;.
Thus, by Theorem 2.2, n and u are also decreased. So, in
many cases, the levels of the network are also reduced.

We partition the output set into F;, 7o, ..., F,, so that
each group has nearly the same number of elements. If
we evaluate them in parallel, then the evaluation speed-up
will be r times. Furthermore, in many cases, since levels
of the network will be decreased, the evaluation speed will
be more than r times. The output partition can be done as
follows:

Algorithm 4.1 (Partitioning of the outputs)

1. Let Th be the threshold on the number of levels of
LUTsandlet! = 1.

2. Among the BDDs for the individual output function,
find f; that requires the maximum number of levels.

3. Let F; « fl

4. Let f; bean output function that is not selected. While
the number of levels does not exceeds Tk, let F; +
F U {f]}

5. If there exist an unselected output, then let ! « [+ 1

and go to 2. If all the output functions are selected,
then stop.

5 Architecturefor Reconfigurable Hardware

The cascade of LUTs shown in Fig. 2.3 can be simulated
by the architecture shown in Fig. 5.1. In this architecture,
the memory storesthe datafor LUTS, while the control part
(asequencer) stores theinformation of the interconnections
among LUTs. Since the network structure is very simple,
the control part is also simple. We can make the operation
fast by using a special hardware tailored to the given logic
function.

XoX1X2X3X4 X5 Xe X7 X8 Xg
I Y | | I
0 Y3
Y1 £
Yo Y4
Page 0 Page 1 Page 2

Figure 5.2: Cascade.

Ao
— A
A

A

Figure 5.3: Memory for Logic Simulation.

Example5.1 Given a 10-variable function f(xzq,z1, ...,
o), and the cascade of 5-input LUTs shown in Fig. 5.2, re-
alize f by the memory shown in Fig. 5.3 and a sequencer.
Fig. 5.4 shows the map of the LUT data in the memory,
where the hatched part shows the unused area.

Algorithm 5.1 (Function Evaluation using a Memory and
a Sequencer)

1. Let (Ao, Ay, Ay, Az, As, As, As) —

(Oa Oa To, L1, L2, T3, l‘4).

2. Read (Do,Dl,Dz,Dg),andlet
(Yo, 41, y2) < (D1, D2, D3).

3. Let (AO,Al,AQ,A3,A4,A5,A6) —
(Oa 1a Yo, Y1, Y2, Ts, x6)-

4. Read (Do, Dl, Dz, Dg), and let (yg, y4) — (Dz, Dg)

5. Let (AO,Al,AQ,A3,A4,A5,A6) —
(1a Oa Y3, Y4,T7, T8, l‘g).

6. Read (Do, Dl, Dz, Dg), and let (f) — (Dg)

In this way, we can evaluate f by accessing the memory
three times. (End of Example)

Memory-Packing

In Example 5.1, only the data for the LUTs in the same
stage of the cascade are stored in a page. By thisrestriction,
more than half of the memory areaisunused in Fig. 5.4. By
embedding the LUT data for the final stage of the cascade
into the Dy area in Page 0, we can save memory. In gen-
era, the LUT data of the same stage of the cascade must
be read at the same time, and so must be stored in the same
page. However, if there is unused area in the same page,
we can store the LUT data for the different stage. Thisis
called memory-packing. By memory packing, the neces-
sary memory can be reduced up to [number of LUTsx 2%
bit]. The memory-packing can be done as follow:

Algorithm 5.2 (Memory-packing)

AoA1 A2A3A4AsAG 4bits

00 00000
S Yo | Y1 |Y2
0011111
01 00000
S Y3 | Y4
0111111
10 00000
S f
1011111
11 00000
S Page 3
1111111

Page 0

Page 1

Page 2

ool b d
Do D1 D2 D3

Figure 5.4: Mapping of LUT Datainto the Memory.

1. Let u; be the number of outputs in the i-th stage (¢ =
1,2,...,s) of the cascade. Notethat u; = 1, sincein
the final stage of the cascade, the number of outputsis
1.

2. Prepare memory having u = max; {u; }-bit outputs.

3. Sortug, us, ..., us inincreasing order, and let themto
bevl,vz, coe, Us

4. Leti < 0.

5. Leti« i+ 1landk < 0.

6. Check if v; outputs can be assigned in the k-th page. If
possible, assign it, and return to 5, otherwise let k «+
k+1,andgoto6.

7. If i = s isassigned, stop.

Theorem 5.1 Suppose that an n-variable logic function is
realized by the cascade of k-LUTs shown in Fig. 2.3. Let
L(bits) be the size of memory available, and let p,., be
the width of the BDD. Then, we have

k>u+1,
u = [logy fmaz |,

~ 2
2k(%+u—1)gL

Example 5.2 The benchmark function C499 has n = 41
inputs and m = 32 outputs. Let usrealize it on a memory
with L = 229(1 Mega) bits. Snce .. = 2048, we have
u = [logs ftmaz] = 11. Note that we need n* = n +
[log, m] = 41 + 5 = 46 input and auxiliary variables.
From Theorem 5.1, it is sufficient to consider k with values
for 12 < k < 16. (End of Example)

6 Experimental Results
6.1 Realization of Cascades

Table 6.1 shows the results for the cascade realization of
benchmark functions. Columns for MTBDD, BDD for CF,
SBDD, and BDD for ECFN denote the numbers of nodes
in the corresponding BDDs. Thistable showsthat the sizes

Table 6.1: Experimental Results (£ = 15).

Name | In|Out Number of nodes Imazl | fbmaze | LOwer and This |MISFPGA
BDD BDD for Upper bounds | method

MTBDD |for CF|SBDD| ECFN S1 S2 s| N| s N

C432 | 36| 7 1198| 885| _1075 85 101 83| 4 5| 4 5| 4| 20| 9| 22
C499 | 41| 32 27876| 24944\ 21/6| 2048| 4 10| 6 7| 7| 60| 4| 104
C880 | 60| 26 4166 4567| 466| 464| 6 11| 8 9| 8| 51| 9| 66
C1908| 33| 25 7456 754 620 6201 4 7| 5 6| 5] 35 7| 104
C2670(233|140 2847 3688 411| 284|118 40|28 29/28|1/0| 5| 186
C3540(50| 229564117 34710| 39320| 5420 2 5 2211 11/11(107|13| 1%4
C5315(178|123 2564 3266 258| 238|114 27|22 23(23|142| 7| 188
C7552 (207|108 2945 3648| 193| 160|16 31|25 26|25|156| 7| 254
apex3 50 537| 1786| 986 1207 204| 165\ 5 9| 6 7| 6| 28| 4| 86
ex/ | 49| 37 300 437 55 49| 5 7| 5 6| 5] 21| 2| 38
b 41| 21 32720 1582 177 219 42 40| 4 6| 4 5| 4| 14| 2 22
dalu 75| 16| 522749| 9042| 11/8 1218| 244| 149| 7 11| 8 9| 8| 40|12| 119
dei 256|245 3975 3740| 608| 285(20 44|34 35/34|235| 2| 309
duke2 | 22| 29 638| _755| 366 452 18 48| 3 4| 3 4| 3| 10| 3| 38
€64 65| 65 131 2277 194 675 66 36| 6 9| 7 8| 7| 25| 5| 69
exd* |128| 28| 4722244 540 602 83 38| 7 11| 8 9| 8| 32| 2| .33
k2 45| 45 913| 2860| 1321 1640 251 245/ 5 7| 5 6| 6] 28| 6| 161
ro} 135(10¢ 8501 9658 | 1196| 1204|11 34|18 19(18|125| 7| 141
spla 16| 46| 11100| 2121| 628 626 101 69| 2 3| 2 3| 2| 8| 6| 144

Imaz1: Thewidth of SBDD.

Imaz2: Thewidth of the BDD for the ECFN.

s1: Lower and upper bounds on the number of levels obtained by Theorem 2.1.
s9: Lower and upper bounds on the number of levels obtained by Theorem 2.2.

s: Number of levels.

N: Number of LUTSs.

*: Contains redundant variables. We used the number of dependent variables to obtain the bounds.

of BDDs for ECFNs are, in most cases, smaller than corre-
sponding MTBDDs and BDDs for CFs. Blank entries show
that the BDDs were too large to construct.

We optimized the BDD for ECFN by mixing the in-
put variables and auxiliary variables. We find the ordering
of the variables by using a heuristics that reduces the to-
tal number of nodes in the QROBDD [16]. Note that this
heuristic will reduce @ in Theorem 2.2. Inthe table, pt 401
denotesthe width of the shared BDDs (SBDDs), and ji,42:2
denotes the width of the BDD for the ECFN. s; and s»
show the lower and upper bounds on the number of levels
obtained from Theorem 2.1 and Theorem 2.2, respectively.
We can see that s» is tighter than s;. Also, s denotes the
number of levelsin a cascade, and N denotes the number
of LUTs. In this experiment, encodings of outputs [19] are
not optimized.

6.2 Comparison with Murgai-Hirose-Fujita’s M ethod
Murgai-Hirose-Fujita[14] have developed alogic simu-
lation system which realizes given function by using £-LUT
(k = 15). In their paper [14], no level of the networks are
shown. So, wedid similar experiment by using MIS-FPGA,
and obtained N, the number of LUTS, and s, the number of
levels. In this experiment, we used the following script:

xI _inp -n 2

x|l _partition -n 15
sinplify

x|l _partition -n 15

VVVYV

The results are shown in the last two columns of Table 6.1.
In most cases, MIS-FPGA produced networks with more
LUTs, but fewer levels. Note that Murgai-Hirose-Fujita
[14] use an event-driven method, so the evaluation time is
proportional to NV, the number of LUTSs.

Table 6.2: Results of Output Partition.

Name | Without |4 partition |8 partition
partition
s|LUTs| s| LUTs| s| LUTs
C2670(28| 170|112 178|11| 183
C5315|23| 142|13| 257|10| 295
755225 1956(17| 216|17| 203
es (34| 235/15| 319| 9| 293
rot 18| 125| 9| 179| 7| 203

When we have to evaluate m outputs, the evaluation time
of the Algorithm 5.1 is proportional to s - m. For large
m, we can reduce the number of levels by partitioning the
output set. Table 6.2 compares the numbers of LUTs and
levels of cascades when the outputs are partitioned into four
and eight groups by using Algorithm 4.1. Partitioning the
outputs into four groups reduced the number of levelsinto
half. In this case, the parallel evaluation is more than eight
times faster than the original one.

6.3 Prototype of Reconfigurable Hardware

In order to evaluate the performance of the architecture
shown in Section 5, we developed reconfigurable hardware
using acommercially available FPGA board as follows:

o FPGA: Altera EPF10K200S
o Clock frequency :40MHz

o RAM: Static AMBytes
Interface: PCI

In this prototype, we did not implement memory-packing
nor output partition.

6.4 Comparison with Branching Programs

We converted QROBDDs of benchmark functions into
branching programs, and implemented on a specia ma-
chinethat traverses BDDs. Notethat the branching program
based on a QROBDD does not require index, and require
only one memory reference for one variable.

Evaluation time of the cascade method and the branching
program method is proportional to the number of memory
references. Since we use the same FPGA board, the ra-
tio of evaluation time for branching program method to the
cascade method isn + [log, m] to s. For the functionsin
Table 6.1, the cascade method is, on the average, 9.25 times
faster than the branching program method.

7 Conclusions

In this paper, we have shown a method to represent a
multiple-output logic function by a cascade of k-LUTs. We
also developed a reconfigurable hardware consisting of a
memory and a sequencer.

The features of the method include:

1. The system uses a cascade of LUTs. The hardware is
simple to implement. The design consists of iterative
decompositions of BDDs for ECFNSs.

2. Itisfaster than branching programs.

3. It usestime domain multiplexing that reducesthe num-
ber of output pins.

4. Thesystem users BDDs for ECFNs, which are smaller
than the corresponding SBDDs. The input variables
and the auxiliary variables are mixed to reduce the
BDDs.

5. Given the size of memory, we can find the best value
of k to optimize the hardware.

6. By partitioning the outputsinto r groups, the hardware
becomes at least » times faster.

In this paper, we only considered the case where the val-
ues of k are the same for al the stages of a cascade. How-
ever, in general, the value of & can be different for different
stages. By using this technique, we can implement larger
functions on a smaller memory.

Acknowledgments

This research is partly supported by Japan Society for
the Promotion of Science (JSPS) under Grant-in-Aid. Dr.
R. Murgai of Fujitsu Laboratory of America showed us the
method to use MIS-FPGA. Prof. Jon T. Butler improved
English presentation. Prof. Qingjian Yu's comments im-
proved Theorems 2.1 and 2.2.

References

[1] P. Ashar and S. Madlik, “Fast functional simulation using
branching programs,” ICCAD’ 95, pp. 408-412, Oct. 1995.

[2] R. L. Ashenhurst, “The decomposition of switching func-
tions,” In Proceedings of an International Symposiumon the
Theory of Switching, pp. 74-116, April 1957.

[3] J. Babb, R. Tessier, M. Dahl, S. Hanono, D. Hoki, and
A. Agarwal, “Logic emulation with virtual wires” |EEE
Transactions on Computer Aided Design, Vol. 16, No. 6,
pp. 609-626, June 1997.

[4] R. E. Bryant, “Graph-based agorithms for Boolean func-
tion manipulation,” IEEE TC, Vol. C-35, No. 8, pp. 677-691,
Aug. 1986.

[5] H. A. Curtis, A New Approach to The Design of Switching
Circuits, D. Van Nostrand Co., Princeton, NJ, 1962.

[6] M. Davio, J-P Deschamps, and A. Thayse, Digital Systems
with Algorithm Implementation, John Wiley and Sons, New
York, 1983.

[7] Y. Iguchi, T. Sasao, M. Matsuura, and A. Iseno “A hard-
ware simulation engine based on decision diagrams,” Asia
and South Pacific Design Automation Conference (ASP-
DAC'2000), Jan. 26-28, Yokohama, Japan.

[8] Y. Iguchi, T. Sasao, M. Matsuura, “Implementation of
multiple-output functions using PQMDDs,” |EEE Interna-
tional Symposium on Multiple-Valued Logic, pp.199-205,
May 2000.

[9] J-H.R.Jian, J-Y. Jou, and J.-D. Huang, “ Compatible class
encoding in hyper-function decomposition for FPGA syn-
thesis,” Design Automation Conference, pp. 712-717, June
1998.

[10] Y-T. Lai, M. Pedram, and S. B. K. Vrudhula, “EVBDD-
based agorithm for integer linear programming, spectral
transformation, and functional decomposition,” |EEE Trans.
CAD, Vol. 13, No. 8, pp. 959-975, Aug. 1994.

[11] C. Lee, “Representation of switching circuits by binary-
decision programs,” Bell System Technical Journal, Vol. 19,
pp. 985-999, July 1959.

[12] P C. McGeer, K. L. McMillan, A. Sadanha
A. L. Sangiovanni-Vincentelli, and P. Scaglia, “ Fast discrete
function evaluation using decision diagrams,” |CCAD’95,
pp. 402-407, Nov. 1995.

[13] S. Minato, “Minimum-width method of variable ordering
for binary decision diagrams,” |EICE Trans. Fundamentals,
Vol. E75-A, No. 3, pp. 392-399, March 1992.

[14] R. Murgai, F. Hirose, and M. Fujita, “Logic synthesis for a
single large look-up table” Proc. International Conference
on Computer Design, pp. 415-424, Oct. 1995.

[15] T. Sasao, “FPGA design by generalized functional decom-
position,” (Sasao ed.) Logic Synthesis and Optimization,
Kluwer Academic Publishers, 1993.

[16] T. Sasao and M. Fujita (ed.), Representations of Discrete
Functions, Kluwer Academic Publishers 1996.

[17] T. Sasao and J. T. Butler, “A method to represent multiple-
output switching functions by using multi-valued decision
diagrams,” |EEE International Symposium on Multiple-
Valued Logic, pp. 248-254, Santiago de Compostela, Spain,
May 29-31, 1996.

[18] T. Sasao, Switching Theory for Logic Synthesis, Kluwer
Academic Publishers, 1999.

[19] T. Sasao, “Compact SOP representations for multiple-output
functions: An encoding method using multiple-valued
logic,” International Symposium on Multiple-Valued Logic,
Warsaw, Poland, pp. 207-212, May 2001.

[20] A. Thayse, M. Davio, and J.-P. Deschamps, “Optimization
of multiple-valued decision diagrams,” International Sym-
posium on Multiple-Valued Logic, Rosemont, IL., pp. 171-
177, May 1978.

