
Realization of Multiple-Output Functions by Reconfigurable Cascades

Yukihiro IGUCHI1, Tsutomu SASAO2;3, and Munehiro MATSUURA2

1Department of Computer Science, Meiji University
2Department of Computer Science and Electronics, Kyushu Institute of Technology
3Center for Microelectronic Systems, Kyushu Institute of Technology

Abstract
A realization of multiple-output logic functions using a

RAM and a sequencer is presented. First, a multiple-output
function is represented by an encoded characteristic func-
tion for non-zeros (ECFN). Then, it is represented by a cas-
cade of look-up tables (LUTs). And finally, the cascade is
simulated by a RAM and a sequencer. Multiple-output func-
tions for benchmark functions are realized by cascades of
LUTs, and the number of LUTs and levels of cascades are
shown. A partition method of outputs for parallel evalua-
tion is also presented. A prototype has been developed by
using RAM and FPGA. This realization uses time domain
multiplexing, and is useful for the case where the number of
output pins is limited.

1 Introduction
Two of the most crucial problems in system LSIs are

their long design time and short life cycles. A solution to
these problems may be reconfigurable architecture. Recon-
figurable LSIs will reduce the hardware development time
drastically, since one LSI can be used for various applica-
tions.

In this paper, we consider a realization of combina-
tional logic functions by reconfigurable architecture. Var-
ious methods exist to realize multiple-output logic func-
tions by reconfigurable architecture. Among them, random
access memories (RAMs) and programmable logic arrays
(PLAs) directly implement logic functions. However, when
the number of input variables n is large, the necessary hard-
ware becomes too large. Thus, field programmable logic
arrays (FPGAs) are often used. Unfortunately, FPGAs re-
quire layout and routing in addition to logic design. Also,
the area for programming and interconnections are much
larger than the logic area. Thus, FPGAs require large chip
area.

When speed of the operation is not so important, a
general-purpose microprocessor can be used to implement
logic functions. However, the microprocessor implementa-
tion is often 100 to 1000 times slower than the direct circuit
realizations. Also, the power dissipation is rather high.

Here, we assume the following applications:

� The system need not be so fast as custom logic circuits,
but must be faster than the software realization.
� The system is too large to implement by a PLA or a

RAM directly.
� System must be reconfigurable.

In this paper, we consider a method to implement logic
functions by using sequential network, where the speed
must be faster than the conventional software realization.

0 1

v0

v1

v2

0 1

0 1

0 1

x1

x2

x3

v3 v4

(a)

v0: if(x1 == 0) goto v1;
else goto v2;

v1: if(x2 == 0) goto v3;
else goto v4;

v2: if(x3 == 0) goto v3;
else goto v4;

v3: return(0);

v4: return(1);

(b)

Figure 1.1: Branching program method.

First, to make the problem simple, let us consider the real-
ization of single-output logic function of n variables.

The branching program method realizes a logic function
by a sequential network as follows [1]:

1) Represent the given logic function by a binary decision
diagram (BDD) [11, 4] (Fig. 1.1(a)).

2) Replace each non-terminal node of the BDD with an
“If then else” statement, and derive the branching pro-
gram to represent f (Fig. 1.1(b)).

3) Implement the program by a general-purpose micro-
processor.

Note that the branching program method requires O(n)
computation time. To reduce the instruction fetch time, spe-
cial sequential machines that traverse the BDD structure are
proposed [20, 6]. In this case, the necessary memory is pro-
portional to the number of nodes in the BDD.

If k variables are evaluated at the same time, then the
evaluation speed will be k times faster than the branching
program method. This corresponds to using a multiple-
valued decision diagram (MDD) instead of a BDD [12, 8].

If we partition the BDD into several pages, and operate
each page in parallel, then we have the pipelined architec-
ture [8], which is several times faster than the naive realiza-
tion.

In this paper, we propose the LUT cascade method,
which uses lookup tables (LUTs) as basic logic elements.
In this method, a cascade of LUTs is used to implement
logic functions, which makes the sequencer simple enough
to be implemented by a reconfigurable network. Also, with
more memory, we can design a faster system.

In the branching program method, the number of mem-
ory references is proportional to the number of input vari-
ables. On the other hand, in the LUT cascade method, the

1

Table 1.1: Comparison of Reconfigurable Realizations for
Multiple-output Functions.

Performance Design time Chip area
FPGA method High Long Large
LUT cascade method Medium Medium Medium
Branching program Low Short Small
method

Table 2.1: Decomposition chart.

X1 = (x1; x2)

0 0 1 1
0 1 0 1

0 0 0 1 1 0
X2 = (x3; x4) 0 1 1 1 1 1

1 0 0 1 1 0
1 1 0 0 0 0

number of memory references is equal to the number of lev-
els of the cascade. Experimental results show that the num-
ber of levels of the cascade is about one tenth of the num-
bers of the input variables. Thus, the we can expect that the
LUT cascade method will be about ten times faster than the
branching program method.

As for the amount of memory, branching program
method requires memory that is proportional to the number
of nodes in the BDD. On the other hand, the LUT cascade
method requires more memory than the branching program
method.

Table 1.1 compares these methods.

2 Cascade Realization of Logic Functions
In this part, we will show a method to implement a logic

function by a cascade of LUTs.

Definition 2.1 Let X = (x1; x2; : : : ; xn) be input vari-
ables. A set of variables X is denoted by fXg. X =
(X1; X2) is a partition of X if fX1g [fX2g = fXg and
fX1g\fX2g = �. The number of variables in X is denoted
by jXj.

Definition 2.2 For a logic function f(X), let X =
(X1; X2) be a partition of X. The decomposition chart
of f , denoted by M (f : X1; X2), is the matrix having 2n1

columns and 2n2 rows. In M (f : X1; X2), each row and
column has label with binary number, and the correspond-
ing element denotes the truth value of f , where n1 = jX1j

and n2 = jX2j. The columns and rows have all possible
patterns of n1 bits and n2 bits, respectively.

Example 2.1 Let f(X) be a 4-variable function, and X =
(X1; X2) be a partition of X, where X1 = (x1; x2) and
X2 = (x3; x4). Table 2.1 is an example of a decomposition
chart. (End of Example)

Definition 2.3 The number of different column patterns in
a decomposition chart is the column multiplicity, and is
denoted by �.

f

X1 X2
u

Figure 2.1: Functional Decomposition.

X1

X2

0

q1 q2 qµ

1

Figure 2.2: Functional decomposition using BDD.

The column multiplicity of a decomposition chart depends
on the partition X = (X1; X2) of the input variables.

Lemma 2.1 [2, 5] Let the partition of X be (X1; X2). If
the column multiplicity of the decomposition chart M (f :
X1; X2) for a function f is �, then f can be represented as
f(X) = g(h1(X1); h2(X1); : : : ; hu(X1); X2), and f can
be realizable with the network structure shown in Fig. 2.1,
where u = dlog2 �e. X1 is the bound set.

Lemma 2.2 [10, 15] Let (X1; X2) be a partition of X, and
let the BDD of the function f be partitioned as shown in
Fig. 2.2. Suppose that k nodes in the lower block are adja-
cent to the upper block. Also, let the column multiplicity of
the decomposition chart M (f : X1; X2) for the function f
be �. Then, � = k.

Definition 2.4 [13] The width of the BDD at level k is the
number of edges crossing the section of the graph between
xk and xk+1, where the edges pointing to the same nodes
are counted as one. The width of the BDD is the maximum
width of the BDD among the levels.

Theorem 2.1 Consider a BDD for an n-variable logic
function f . Let the width of the BDD be �max. If u =
dlog2 �maxe � k � 1, then f can be realized by a cascade
of k-LUTs shown in Fig. 2.3. Let s be the numbers of levels
of the cascade, and N be the number of LUTs, then we have

d
n+ u� 2

k � 1
e � s � 1 + d

n� u� 1

k � u
e

d
n+ u� 2

k � 1
e + u� 1 � N � d

n � u� 1

k � u
eu+ 1

Theorem 2.2 Let s be the number of levels of the cascade
in Fig. 2.3. Then, we have

d
n � û

k � û
e � s � 1+d

n� û� 1

k � û
e, where û =

1

s � 1

s�1X

i=1

ui:

2

f

X2
u2

X1
u1

XsXs-1
us-1us-2

Figure 2.3: The network obtained by applying functional
decompositions s � 1 times.

ui = dlog2 �ie and �i is the column multiplicity for the
decomposition of f , where X1[X2 [� � �[Xi is the bound
set.

Theorem 2.2 gives tighter bounds on s than Theorem 2.1.
Since û is hard to obtain, we approximate it by the average
value of the logarithm of the widths of all the levels in the
BDD. From these relations, we can easily estimate the num-
ber of LUTs and the level of the cascade.

3 Representation of Multiple-output Func-
tion

Although the method described in the previous section
is useful for a single-output function, it is hard to apply to
multiple-output functions. In the case of an m-output func-
tion, the number of terminal nodes of the MTBDD [16] can
be as much as 2m, which may be too large to construct.
Also, the representations using characteristic function (CF)
of multiple-output function have been developed [1]. How-
ever, in many cases, BDDs for CFs are too large to con-
struct. From this, we use the following method to represent
a multiple-output function.

Definition 3.1 [19] Let m functions be fj (j =
0; 1; : : : ;m � 1). The encoded characteristic function for
non-zero outputs (ECFN) is

ECFN =

w�1_

j=0

z
bw�1

w�1 z
bw�2

w�2 � � � z
b0

0 fj;

where ~b = (bw�1; bw�2; : : : ; b0) is the binary representa-
tion of the integer j, and w = dlog2me.

Note that z0; z1; : : : ; zw�1 are auxiliary variables that
represent the outputs.

Example 3.1 Consider the case of m = 8. Let z0, z1,
and z2 be the auxiliary variables that represent output
groups. In this case, the ECFN of the 8-output function
(f0; f1; : : : ; f7) is

ECFN = �z2�z1�z0f0 _ �z2�z1z0f1 _ �z2z1�z0f2 _ �z2z1z0f3 _

z2�z1�z0f4 _ z2�z1z0f5 _ z2z1�z0f6 _ z2z1z0f7

(End of Example)

An ECFN is an (n + w)-input single-output function that
represents an n-input m-output function by time domain
multiplexing. When constructing a BDD for an ECFN, we
can reduce the size of the BDD by mixing the auxiliary vari-
ables and ordinary input variables. We can also reduce the
sizes of BDDs by considering the encoding methods [19].

Memory

MARInput Reg

Control

Output Reg

MBR

Figure 5.1: Architecture for Logic Simulator.

4 Level Reduction by Output Partition
To evaluate an m-output function by using the network

for the ECFN, we have to iterate logic evaluation m times
by changing the values of the auxiliary variables. Thus,
when m is large, the evaluation time tends to be long. To
solve this difficulty, we use a parallel process to make it
faster:

To represent a multiple-output logic function F =
ff0; f1; : : : ; fm�1g, partition the output set F into
F1;F2; : : : ;Fr, where F1 [F2 [� � � [Fr = F , and
Fi \ Fj = � (i 6= j). And, we can reduce the levels of
the cascade. Let �i be the width of the BDD representing
the ECFN for Fi. Clearly, �i � �. Partitioning the outputs
F will often reduce the number of input variables and �i.
Thus, by Theorem 2.2, n and û are also decreased. So, in
many cases, the levels of the network are also reduced.

We partition the output set into F1;F2; : : : ;Fr, so that
each group has nearly the same number of elements. If
we evaluate them in parallel, then the evaluation speed-up
will be r times. Furthermore, in many cases, since levels
of the network will be decreased, the evaluation speed will
be more than r times. The output partition can be done as
follows:

Algorithm 4.1 (Partitioning of the outputs)

1. Let Th be the threshold on the number of levels of
LUTs and let l = 1.

2. Among the BDDs for the individual output function,
find fi that requires the maximum number of levels.

3. Let Fl fi.
4. Let fj be an output function that is not selected. While

the number of levels does not exceeds Th, let Fl
Fl [ffjg.

5. If there exist an unselected output, then let l l + 1
and go to 2. If all the output functions are selected,
then stop.

5 Architecture for Reconfigurable Hardware
The cascade of LUTs shown in Fig. 2.3 can be simulated

by the architecture shown in Fig. 5.1. In this architecture,
the memory stores the data for LUTs, while the control part
(a sequencer) stores the information of the interconnections
among LUTs. Since the network structure is very simple,
the control part is also simple. We can make the operation
fast by using a special hardware tailored to the given logic
function.

3

x0 x1 x2 x3 x4

y0
y1
y2

y3

y4

x5 x6 x7 x9x8

Page 0 Page 1 Page 2

f

Figure 5.2: Cascade.

A0
A1
A2

A6

D0
D1
D2
D3

Figure 5.3: Memory for Logic Simulation.

Example 5.1 Given a 10-variable function f(x0; x1; : : : ;
x9), and the cascade of 5-input LUTs shown in Fig. 5.2, re-
alize f by the memory shown in Fig. 5.3 and a sequencer.
Fig. 5.4 shows the map of the LUT data in the memory,
where the hatched part shows the unused area.

Algorithm 5.1 (Function Evaluation using a Memory and
a Sequencer)

1. Let (A0; A1; A2; A3; A4; A5; A6)

(0; 0; x0; x1; x2; x3; x4).

2. Read (D0; D1; D2; D3), and let
(y0; y1; y2) (D1; D2; D3).

3. Let (A0; A1; A2; A3; A4; A5; A6)

(0; 1; y0; y1; y2; x5; x6).

4. Read (D0; D1; D2; D3), and let (y3; y4) (D2; D3).

5. Let (A0; A1; A2; A3; A4; A5; A6)

(1; 0; y3; y4; x7; x8; x9).

6. Read (D0; D1; D2; D3), and let (f) (D3).

In this way, we can evaluate f by accessing the memory
three times. (End of Example)

Memory-Packing
In Example 5.1, only the data for the LUTs in the same

stage of the cascade are stored in a page. By this restriction,
more than half of the memory area is unused in Fig. 5.4. By
embedding the LUT data for the final stage of the cascade
into the D0 area in Page 0, we can save memory. In gen-
eral, the LUT data of the same stage of the cascade must
be read at the same time, and so must be stored in the same
page. However, if there is unused area in the same page,
we can store the LUT data for the different stage. This is
called memory-packing. By memory packing, the neces-
sary memory can be reduced up to [number of LUTs�2k
bit]. The memory-packing can be done as follow:

Algorithm 5.2 (Memory-packing)

y0

D0

0 0 0 0 00 0
y1 y2

y4y3 Page 1

Page 2

Page 3

A0A1 A2A3A4A5A6

D1 D2 D3

1 1 1 1 10 0
0 0 0 0 00 1

1 1 1 1 10 1
0 0 0 0 01 0

1 1 1 1 11 0
0 0 0 0 01 1

1 1 1 1 11 1

Page 0

4bits

f

Figure 5.4: Mapping of LUT Data into the Memory.

1. Let ui be the number of outputs in the i-th stage (i =
1; 2; : : : ; s) of the cascade. Note that us = 1, since in
the final stage of the cascade, the number of outputs is
1.

2. Prepare memory having u = maxifuig-bit outputs.
3. Sort u1; u2; : : : ; us in increasing order, and let them to

be v1; v2; : : : ; vs.
4. Let i 0.
5. Let i i+ 1 and k 0.
6. Check if vi outputs can be assigned in the k-th page. If

possible, assign it, and return to 5, otherwise let k
k + 1, and go to 6.

7. If i = s is assigned, stop.

Theorem 5.1 Suppose that an n-variable logic function is
realized by the cascade of k-LUTs shown in Fig. 2.3. Let
L(bits) be the size of memory available, and let �max be
the width of the BDD. Then, we have

k � u+ 1;

u = dlog2 �maxe;

2k(
n+ u� 2

k � 1
+ u� 1) � L

Example 5.2 The benchmark function C499 has n = 41
inputs and m = 32 outputs. Let us realize it on a memory
with L = 220(1 Mega) bits. Since �max = 2048, we have
u = dlog2 �maxe = 11. Note that we need n� = n +
dlog2me = 41 + 5 = 46 input and auxiliary variables.
From Theorem 5.1, it is sufficient to consider k with values
for 12 � k � 16. (End of Example)

6 Experimental Results
6.1 Realization of Cascades

Table 6.1 shows the results for the cascade realization of
benchmark functions. Columns for MTBDD, BDD for CF,
SBDD, and BDD for ECFN denote the numbers of nodes
in the corresponding BDDs. This table shows that the sizes

4

Table 6.1: Experimental Results (k = 15).

Name In Out Number of nodes �max1 �max2 Lower and This MIS-FPGA

BDD BDD for Upper bounds method
MTBDD for CF SBDD ECFN s1 s2 s N s N

C432 36 7 1198 885 1075 859 101 83 4 5 4 5 4 20 9 22
C499 41 32 27876 24944 2176 2048 4 10 6 7 7 60 4 104
C880 60 26 4166 4567 466 464 6 11 8 9 8 51 9 66
C1908 33 25 7456 7548 620 620 4 7 5 6 5 35 7 104
C2670 233 140 2847 3688 411 284 18 40 28 29 28 170 5 186
C3540 50 22 9564117 34710 39320 5420 5482 5 22 11 11 11 107 13 154
C5315 178 123 2564 3256 258 238 14 27 22 23 23 142 7 188
C7552 207 108 2945 3648 193 160 16 31 25 26 25 156 7 254
apex3 54 50 537 1786 986 1207 204 165 5 9 6 7 6 28 4 86
apex7 49 37 300 437 55 49 5 7 5 6 5 21 2 38
b9 41 21 32720 1582 177 219 42 40 4 6 4 5 4 14 2 22
dalu 75 16 522749 9042 1178 1218 244 149 7 11 8 9 8 40 12 119
des 256 245 3975 3740 608 285 20 44 34 35 34 235 2 309
duke2 22 29 638 755 366 452 78 48 3 4 3 4 3 10 3 38
e64 65 65 131 2277 194 675 66 36 6 9 7 8 7 25 5 69
ex4* 128 28 4722244 540 602 83 38 7 11 8 9 8 32 2 33
k2 45 45 913 2860 1321 1640 251 245 5 7 5 6 6 28 6 161
rot 135 107 8501 9658 1196 1204 11 34 18 19 18 125 7 141
spla 16 46 11100 2121 628 626 101 69 2 3 2 3 2 8 6 144
�max1: The width of SBDD. �max2: The width of the BDD for the ECFN.
s1: Lower and upper bounds on the number of levels obtained by Theorem 2.1.
s2: Lower and upper bounds on the number of levels obtained by Theorem 2.2.
s: Number of levels. N : Number of LUTs.
*: Contains redundant variables. We used the number of dependent variables to obtain the bounds.

of BDDs for ECFNs are, in most cases, smaller than corre-
sponding MTBDDs and BDDs for CFs. Blank entries show
that the BDDs were too large to construct.

We optimized the BDD for ECFN by mixing the in-
put variables and auxiliary variables. We find the ordering
of the variables by using a heuristics that reduces the to-
tal number of nodes in the QROBDD [16]. Note that this
heuristic will reduce û in Theorem 2.2. In the table, �max1

denotes the width of the shared BDDs (SBDDs), and �max2

denotes the width of the BDD for the ECFN. s1 and s2
show the lower and upper bounds on the number of levels
obtained from Theorem 2.1 and Theorem 2.2, respectively.
We can see that s2 is tighter than s1. Also, s denotes the
number of levels in a cascade, and N denotes the number
of LUTs. In this experiment, encodings of outputs [19] are
not optimized.

6.2 Comparison with Murgai-Hirose-Fujita’s Method
Murgai-Hirose-Fujita [14] have developed a logic simu-

lation system which realizes given function by using k-LUT
(k = 15). In their paper [14], no level of the networks are
shown. So, we did similar experiment by using MIS-FPGA,
and obtained N , the number of LUTs, and s, the number of
levels. In this experiment, we used the following script:

> xl_imp -n 2
> xl_partition -n 15
> simplify
> xl_partition -n 15

The results are shown in the last two columns of Table 6.1.
In most cases, MIS-FPGA produced networks with more
LUTs, but fewer levels. Note that Murgai-Hirose-Fujita
[14] use an event-driven method, so the evaluation time is
proportional to N , the number of LUTs.

Table 6.2: Results of Output Partition.

Name Without 4 partition 8 partition
partition
s LUTs s LUTs s LUTs

C2670 28 170 12 178 11 183
C5315 23 142 13 257 10 295
C7552 25 156 17 216 17 203
des 34 235 15 319 9 293
rot 18 125 9 179 7 203

When we have to evaluate m outputs, the evaluation time
of the Algorithm 5.1 is proportional to s � m. For large
m, we can reduce the number of levels by partitioning the
output set. Table 6.2 compares the numbers of LUTs and
levels of cascades when the outputs are partitioned into four
and eight groups by using Algorithm 4.1. Partitioning the
outputs into four groups reduced the number of levels into
half. In this case, the parallel evaluation is more than eight
times faster than the original one.

6.3 Prototype of Reconfigurable Hardware
In order to evaluate the performance of the architecture

shown in Section 5, we developed reconfigurable hardware
using a commercially available FPGA board as follows:

� FPGA: Altera EPF10K200S

� Clock frequency :40MHz

� RAM: Static 4MBytes

� Interface: PCI

In this prototype, we did not implement memory-packing
nor output partition.

5

6.4 Comparison with Branching Programs
We converted QROBDDs of benchmark functions into

branching programs, and implemented on a special ma-
chine that traverses BDDs. Note that the branching program
based on a QROBDD does not require index, and require
only one memory reference for one variable.

Evaluation time of the cascade method and the branching
program method is proportional to the number of memory
references. Since we use the same FPGA board, the ra-
tio of evaluation time for branching program method to the
cascade method is n + dlog2me to s. For the functions in
Table 6.1, the cascade method is, on the average, 9.25 times
faster than the branching program method.

7 Conclusions
In this paper, we have shown a method to represent a

multiple-output logic function by a cascade of k-LUTs. We
also developed a reconfigurable hardware consisting of a
memory and a sequencer.

The features of the method include:

1. The system uses a cascade of LUTs: The hardware is
simple to implement. The design consists of iterative
decompositions of BDDs for ECFNs.

2. It is faster than branching programs.
3. It uses time domain multiplexing that reduces the num-

ber of output pins.
4. The system users BDDs for ECFNs, which are smaller

than the corresponding SBDDs: The input variables
and the auxiliary variables are mixed to reduce the
BDDs.

5. Given the size of memory, we can find the best value
of k to optimize the hardware.

6. By partitioning the outputs into r groups, the hardware
becomes at least r times faster.

In this paper, we only considered the case where the val-
ues of k are the same for all the stages of a cascade. How-
ever, in general, the value of k can be different for different
stages. By using this technique, we can implement larger
functions on a smaller memory.

Acknowledgments
This research is partly supported by Japan Society for

the Promotion of Science (JSPS) under Grant-in-Aid. Dr.
R. Murgai of Fujitsu Laboratory of America showed us the
method to use MIS-FPGA. Prof. Jon T. Butler improved
English presentation. Prof. Qingjian Yu’s comments im-
proved Theorems 2.1 and 2.2.

References
[1] P. Ashar and S. Malik, “Fast functional simulation using

branching programs,” ICCAD’95, pp. 408-412, Oct. 1995.
[2] R. L. Ashenhurst, “The decomposition of switching func-

tions,” In Proceedings of an International Symposium on the
Theory of Switching, pp. 74-116, April 1957.

[3] J. Babb, R. Tessier, M. Dahl, S. Hanono, D. Hoki, and
A. Agarwal, “Logic emulation with virtual wires,” IEEE
Transactions on Computer Aided Design, Vol. 16, No. 6,
pp. 609-626, June 1997.

[4] R. E. Bryant, “Graph-based algorithms for Boolean func-
tion manipulation,” IEEE TC, Vol. C-35, No. 8, pp. 677-691,
Aug. 1986.

[5] H. A. Curtis, A New Approach to The Design of Switching
Circuits, D. Van Nostrand Co., Princeton, NJ, 1962.

[6] M. Davio, J-P Deschamps, and A. Thayse, Digital Systems
with Algorithm Implementation, John Wiley and Sons, New
York, 1983.

[7] Y. Iguchi, T. Sasao, M. Matsuura, and A. Iseno “A hard-
ware simulation engine based on decision diagrams,” Asia
and South Pacific Design Automation Conference (ASP-
DAC’2000), Jan. 26-28, Yokohama, Japan.

[8] Y. Iguchi, T. Sasao, M. Matsuura, “Implementation of
multiple-output functions using PQMDDs,” IEEE Interna-
tional Symposium on Multiple-Valued Logic, pp.199-205,
May 2000.

[9] J.-H. R. Jian, J.-Y. Jou, and J.-D. Huang, “Compatible class
encoding in hyper-function decomposition for FPGA syn-
thesis,” Design Automation Conference, pp. 712-717, June
1998.

[10] Y-T. Lai, M. Pedram, and S. B. K. Vrudhula, “EVBDD-
based algorithm for integer linear programming, spectral
transformation, and functional decomposition,” IEEE Trans.
CAD, Vol. 13, No. 8, pp. 959-975, Aug. 1994.

[11] C. Lee, “Representation of switching circuits by binary-
decision programs,” Bell System Technical Journal, Vol. 19,
pp. 985-999, July 1959.

[12] P. C. McGeer, K. L. McMillan, A. Saldanha,
A. L. Sangiovanni-Vincentelli, and P. Scaglia, “Fast discrete
function evaluation using decision diagrams,” ICCAD’95,
pp. 402-407, Nov. 1995.

[13] S. Minato, “Minimum-width method of variable ordering
for binary decision diagrams,” IEICE Trans. Fundamentals,
Vol. E75-A, No. 3, pp. 392-399, March 1992.

[14] R. Murgai, F. Hirose, and M. Fujita, “Logic synthesis for a
single large look-up table,” Proc. International Conference
on Computer Design, pp. 415-424, Oct. 1995.

[15] T. Sasao, “FPGA design by generalized functional decom-
position,” (Sasao ed.) Logic Synthesis and Optimization,
Kluwer Academic Publishers, 1993.

[16] T. Sasao and M. Fujita (ed.), Representations of Discrete
Functions, Kluwer Academic Publishers 1996.

[17] T. Sasao and J. T. Butler, “A method to represent multiple-
output switching functions by using multi-valued decision
diagrams,” IEEE International Symposium on Multiple-
Valued Logic, pp. 248-254, Santiago de Compostela, Spain,
May 29-31, 1996.

[18] T. Sasao, Switching Theory for Logic Synthesis, Kluwer
Academic Publishers, 1999.

[19] T. Sasao, “Compact SOP representations for multiple-output
functions: An encoding method using multiple-valued
logic,” International Symposium on Multiple-Valued Logic,
Warsaw, Poland, pp. 207-212, May 2001.

[20] A. Thayse, M. Davio, and J.-P. Deschamps, “Optimization
of multiple-valued decision diagrams,” International Sym-
posium on Multiple-Valued Logic, Rosemont, IL., pp. 171-
177, May 1978.

6

