IEEE COMPUTER
SOCIETY REPRINT

IEEE COMPUTER SOCIETY
1109 Spring Street, Suite 300
Silver Spring, MD 20910

&

1684 ﬂB'ﬂ' THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC

HART: A Hardware for Logic Minimization and Verification

Tsutomu SASAO

Department of Electronic Engineering
Osaka University
Suita 565, Japan

Abstract: An experimental

tem using a hardware tautology checker (HART) have
been developed, and successfully minimized large
PLA’s. In the proposed system, the minimization
algorithm (TMINI) is similar to that of MINI, but
no complement is generated. Instead, a HART is
used to check the implication relation quickly.
Generation of prime implicants, detection of all
the essential prime implicants, detection of the
redundant implicants, and wverification of the
correctness of the minimization are performed
efficiently by using the HART. The system consists
of PC-9800E (a personal computer utilizing a 8086
micro—processor with 256 kilo bytes memory), and
a HART for n=8 which is composed by 43 field pro-
grammable logic arrays and some interface TTL IC’s

1. Introduction

logic minimization sys

Logic minimization of expressions with many
variables is necessary not only for programmable
logic array (PLA) designC1], but also for automa~-
tic logic synthesis of random logic networks(2].
Practical heuristic minimization algorithms for
large scale problems can be roughly divided into
two classes.

The first type of the
algorithms include PRESTOL33],
They generate prime implicants by tautology chec-—
king. Because the tautology checking by softuare
is quite time-consuming, these algorithms require
much computation time. For this reason, no itera-

logic minimization
POPL4] and TAULS3].

ive improvement is attempt in these algorithms,.
The quality of the solution of these algorithms
are sometimes far from minimumié], and so the

minimized results are unreliable.

The second type of the logic minimization
algorithms include MINIC?], MINI-IIC81, and
ESPRESSO-I1 C(6]. They are faster then the first

types of algorithms for medium size problems.
These algorithms first generate a complement of a
given function, and then generate prime (or near
prime) implicants. The complement is effectively
used to generate the prime implicants. Because the
generation of prime implicants is less time-
consuming than the first type of the algorithms,
iterative improvement method is used to generate
near optimum solutions. However, for some class of
functions, the size of the complement increase
exponentially with the number of inputsC%]). In
such a case, the first step of the complementation
cannot be completed due to the memory overflow or
the computation time over.

system, the minimization
algorithm (TMINI) is similar to that of MINI-II,
but no complement is generated. Instead, a
hardware tautology checker (HART) is used to check
the implication relation (¢ & or c{ &) quickly.
Generation of prime implicants, detection of all

In the proposed

CH2223-6/85/0000/0713$01.00 © 1985 IEEE

the essential prime implicants, detection of the
redundant implicants, and the verification of the
correctness of the minimization are performed
efficiently by using a HART.

The most time-consuming part in the
minimization algorithm is a implication relation
checking (i.e., to decide c{ & or c{ F). In the
proposed minimization system, it is converted to a

tautology problem (i.e., to decide =1 or
FFE1). By divide and conquer method, the
tautology problem is repeatedly decomposed into
ones with fewer variables until the size of the

sub-problems become the specified value (n=8 for
the experimental system). Then the sub-problems
are sent to the HART through the 1/0 port of the
host processor.

HART for n-variable function consists of

2" 2" copies of
latches and a 2"-input AND gate. It makes a truth
table of the given function, and checks if it is
tautology (F =1) or not (F*E1) by a logic
circuit. In the experimental system, the HART for
n=8 is composed by 43 FPLA’s (Field Programmable
Logic Arrays) and some interface TTL IC’s.

The

copies of n—-input AND gates,

Because the proposed algorithm (TMINI) uses
gsimilar heuristic as that of MINI, it obtains
better solution than PRESTO, POP, and TAU. Because

TMINI needs no complement of the function, it can
minimize large PLAs for which the simple
application of MINI or ESPRESSO fails, on a

personal computer with small memory storage.

I1. Minimization of Logical Expression

In order to explain the idea of the minimiza-
tion method by using a tautology checker as simply
as possible, the given function is supposed to be
a single-output two-valued input function. In addi-
tion, we use the following simple minimization
algorithm to show the idea. However, the real
system treats multiple-valued input binary fun-
ction, and uses a more complicated algorithm to
produce a better solution(103.

Algorithm 2.1:(Minimization of logical Expression)

S1. Expand each cube into prime implicant.
S2. Delete redundant cubes.

In the proposed system, we use Theorem 2.1 for Si1,
and Theorem 2.2 for S2.

Theorem 2.1: (Prime Implicants)

Let F=cV 8, uhere c is a product and 8 is sum
of the other products in & . Suppose that c can be

*

. * .
written as c=xje, where e is a product and xg

denotes either x; or ;i

1) If c(i)< 9, then the literal x; can be removed
from ¢, i.e., F=eV 9.

2) 1f c(id){ © for all possible i, then c is a
prime implicant of ¥.

Let cCid=xie .

Theorem 2.2:

(lrredundant sum-of-products expression)
Suppose that an expression ¥=c1 c2V...ch is

given where, ci(i=1,2.....m) is a prime implicant

of F. Let y=ciV9i, where Qi is a sum of the

prime implicants other than c;e

1) If ci< Qi' then c; can be deleted from %,
i.e., F=9,.

2) If ¢;{ 9, for i=1,2,...,m, then F is

irredundant sum—of-products expression (minimal).

Note that in applying Theorems 2.1 and 2.2,
we have to check the implication relation (c{ &
or not) many times. As shown in the next section,
implication relation checking is quite time-consu-
ming. This implication relation can be converted
into a corresponding tautology problem, and can be
solved by a HART.

In Algorithm 2.1 , the order of the expansion
directions (in step S1), and the order of the
elimination of the redundant prime implicants (in
step S2) greatly influence the quality of the
solution. So, the real algorithm (TMINI) use seve-
ral heuristics to choose near optimal ordering.

111. Software Tautology Checker

In this section, we show that the implication
relation can be examined by a tautology checker.

Definition 3.1: Let & be a sum—of-products ex—
pression. If #F=1, i.e., F is equal to 1 for all
the input combination, then % is said to be
tautology. The problem to decide whether a given
sum-of-products expression is the tautology or not
is said to be a tautology problem.

The following theorem shows that
virtually no hope to solve the tautology
in a polynomial timel163].

there is
problem

Theorem 3.1:The tautology problem is co-NP complete.

Next, we introduce a restriction operation
which converts an implication question into a tau-
tology question.

$1,52 Sa
Definition 3.2: Let c=X1 X2 "'Xn be a cube.
A cube restriction of F to c is
follows and denoted by F(lc).
1) Compute the Boolean intersection of % and c,
and delete null products.

T1 T2 T

2) Replace each product X1 X2Xnn

obtained as

in the
expression obtained in 1)
(T, US)» (T, US) (T_US)
with X, 1 bk, 27 7Fox 0T

For a product term of a switching function, xi=X%.
;i=XQ, and a missing variable (or don’t care) is

i

denoted by x§0,1) =1.

Theorem 3.2: Let c be a cube and F be an
expression. Then, ¢ & — F(lc)=1,

714

The above theorem shows that the implication
relation can be examined by a tautology checker.
When the tautology problem is small enough, it can
be directly checked by a HART. However, when the
problem is large and cannot be solved directly by

a HART, we have to reduce and decompose the prob-
Jem into smaller ones until a HART can check them.
€101

IV. Hardware Tautology Checker(HART)

Fig.4.1 shouws the HART for three-variable
switching function. It consists of a minterm gene-
rator part, a latch part, and an AND gate partl11]

Minterm Generator Part has n-input and 2" -output.
Each

output of the minterm generator corresponds
to a minterm of the function. UWhen a cube ¢ is
applied to the input to the minterm generator
part, all the outputs which correspond to the min-
terms of c become one.

Latch Part consists of n-latches.

reset to zero at the initial state. When a cube is
applied to the minterm generator, all the latches

Every Latch is

which correspond to the minterms of c will be set
to one. We have to apply all the cubes sequential-
ly.

AND gate Part has an 27-input AND gate. The output

becomes one when all the inputs are one, which

shows that the given function is tautology.

The operation of the HART is illustrated in
the following example.

@ denotes AND

3 AND gate part

£
FH

~TT

Latch Part

Minterm Generetor Part

Fig. 4.1 Hardware Tautology Checker for

_Three-Variable Switching Function

Example 4.1: Suppose that we have to check uhether

g=x1x3 Vx2x3 \VJ x4 XoXg \VJ ;1;2 \VJ ;1x2;3

First, convert the expres-
cube as follows:

is tautology or not.
sion into positional

Positional Cube Product term

$ i B 3

0 1-1 1-1 0 €qTxq 1 x3

1 -0 1-0 1 c2=1 Xy Xg

0 1-1 0-0 1 ca=xy Xp X3

1 0-1 0-1 1 cq=xq %5 1

1 0-0 1-10 Cg=xy Xo Xg
Note that x is denoted by 01, x is denoted by 10,
and missing wvariable (don’t care) is denoted by
11.

At the initial state, all the latches are
reset to zero.
When cq is applied, rd and ré are set to one.
When ¢y is applied, r3 and r7 are set to one.
When cg is applied, rS is set to one.
When c, is applied, r0 and rl1 are set to one.
When cg is applied, r2 is set to one.
In the following table, X marks show the latches
which are set by the application of each cube.
Xy Xo Xg €y c©p €3 €4 ¢€g
r0 0 0 O X
r1 0 0 1 X
r2 0 1 0 X
r3 o 1 1 X
rd 1 0 O X
rS 1 0 1 X
ré 1 1 0 X
r? 1 1 1 X
When all the cubes are applied to Fig.4.1,

the output of the AND gate will be one, which

shous that & is tautology. (End of example).

Table 4.1 Number of 2-input AND gates to

realize a Tautology checker

Number of

Inputs n 6 8 10 12 14
Minterm

Generator 88 304 1120 4272 16712
Latch part 128 512 2048 8192 32768
ANDgate part| 63 255 1023 4095 16383
Total 279 1071 4191 16559 65863

Table 4.1 shows the number of two—-input gates
to realize a HARTC101].
In this experiment, a HART for n=3 (Fig.4.1) is re-
alized by a FPLA(825153 compatible) and constitutes
a latch module. The HART for n=8 consists of 32

latch modules and other FPLA s for the AND modules,

which are used for choosing latch modules and the
control module which is used for dynamically chang—

ing the configulation of the HART to check either
an 8~input l-output function or a 6-input 4-output
functions. In the experimental system, there are

715

also the mask modules which are used to make HART
to check implication relation directly (uhich are

not used in the experiments).

V. Description of the Algorithm (TMINI)

In this section, we use the terminology of
MINIC?71,(8]), and that of tautology checker for
multiple-valued input binary function(101].

TMINI (Minimization of Logical Expression)

MO. Let % be a care specification, and OC be a
don’t care specification.

M1i. (Expand) Expand each cube of % against the
other cubes in % VDC.

M2. (Delete) Delete the redundant cubes in &.

M3. (Essential Prime Implicant Detection)

Let ESS be the set of the essential prime
implicants in . Let F1 be the set of the
other implicants in &.

Ma. If 1= ¢ then go to M10.

MS. (Reduce) Reduce each cube of %1 against the
other cubes in F1VESSVDC.

Mé. (Reshape) Reshape #1.

M7. (Expand) Expand each cube of %1 against the
other cubes in F1VESSVOC.

M8. If the size of the new solution is smaller
than the size of the solution immediately
before the last execution of MS, then go to
MS.

M9 . (Input Fat) Expand the input parts of the
each cube in F1.

M10, Let % be ESSV F1.

M11. (Output Slim) Reduce the output parts of
each cube in &.

M12. (Input Fat) Expand the input part of the
cubes uwhich are changed by M11.

M13. (Verification) Check if the obtained cover %

is equivalent to the original specification.

Delete: For each cube ¢ in &%, do the followings:

If ¢ { (¥ -c) UDC) then delete c from ¥.
Expand: The heuristic of the expansion is the

as that of MINI, but the over-expanded cubes
the expanded cubes are generated by using the
tology checking algorithmC103].

same

and
tau-

routine as MINI2(8],[12] is used.

possible

Reduce: The same

It is also to use tautology algorithm.

Reshape: Exactly same as that of MINI.

Essential Prime Implicant Detection

Ei. For each cube c in & do the following.

E2. Expand c into prime implicant.

E3. Partition the cubes in % -{(c) into the follo-

wing three arrays:

F0: Set of the cubes which have common ele-
ment with c.

&%1: Set of the cubes which are distance
from c.

%2: Set of the other cubes in F.

Let O be (F0®c)V F1,

Let H be cons(c,8).

If ¢ H ,then ¢ is non-essential.

one

E4.
ES.

Verification

Check if 1 is equivalent to %#2.

Vi. Let %1 be the original array, %2 be the
minimized array, and DC be the don’t care array.
For each cube c in 1, do the follouwing:

if ¢ (F2VDOC) then go to V5.

For each cube ¢ in %2, do the following:

V2.
V3.

if c{ (F1VOC) then go to V5.
va, #1 is equivalent to ¥2. Stop.
VS. F1 is not equivalent to #2. Stop.

Tautology Checking

T1. Let & be an expression represented by cubi-
cal notation.This routine check if F#=1 (&
is tautology) or F*1 (F is non-tautology).
1f ((the number of the parts S 8) and (the
number of bits in all the parts=2)) or ({ the
number of the input parts S 6) and (the
number of the bits in the output part & 4))
then use a hardware tautology checker.

WUhen n2 10, go to T?7 or T8 depending on the
shape of expressionl[12].

(Reduce the Tautology Problem)

Apply the following operations repeatedly. i
1) Delete a cube which has a part with all 0°s.
2) Delete a column with all 1's.
If & is reduced, then go to T2.
If & has a column with all 07s,
non-tautology and return.

Té. Compute the volume of %.

If the volume of % is less than the volume of
the universal space for then & is non-
tautology and return.

(Split-by-variable Decomposition)

If the j-th part of & has more than 2 bits,
then decompose & into)

VI,V;,,....?k so that the j—th part of ffi

(i=1,2,...,k) has at most 2 bits, uhere

T2.

T3.

T4.

TS. then & is

T7.

S.
e?i=9=<|xj‘). Apply this algorithm to % ..
1f ¥i$1 for some i, then & is non-tautoclogy
and return.

y
return.
7€. (Split-by-term Decomposition)
Suppose that ¥ can be written as F=9Vec,
S, s2 m
where c=X1 X2Xm . Decompose

F into Vl. gz,---.?m. vhere yi=9(|ci).
s, S.

Otherwise, is tautology and

s
Cilel. C2=x11X22|
S. S S. S, S 3
b 3 o172 m
~47%y X52Xg2, weveen and cp=Xy XL X

Arolvy this algorithm to ?i' if g;i$1 for

then & is non tautology and return.
is tautology and return.

o

some
Othe-wize,

V.. Experimental Results

2.i HART < erzus Software
Cemputation time for the tautology checker
Jith zac without HART are compared by using the

ol iowing oxpressions:

S Inlomy \/12V...Vxn .
Tl o= 30 Vo Xyxpeeex, o
Tabie &.1 Comootation time of tautology

cirecker with and without HART(milli-seconds)

A without HART with HART

€i{n) T(n) S(n) T(n)
5 11e 123 27 31
7 268 277 34 38
8 639 653 40 as
9 767 792 168 184
10 932 970 334 363
11 287 1435 287 826
12 335 1986 334 1378
13 38S 2632 384 2024

716

In Table time with HART
data and sending
shows that the

about 1S5 times

6.1, the computation
includes the time for converting
them into HART. This table
tautology checker with HART is
faster than one without HART when n=8. For S(11),
they took almost same computation time because
when n 211, both tautology checkers changes their
strategies to delete unate variables.

6.2 Effect of HART on Minimization.
Minimization time with and without HART
analyzed by using a function SPL10 (See
Table 6.2 shows the minimization process, where
DELETE, EXPAND, ESSENTIAL, INPUT_FAT and
VERIFICATION are accelerated by HART. INPUT_COVER,

is

6.3).

RESHAPE and REDUCE are performed by the same
routine, so the computation time are equal.
Table 6.2 Minimization process of TMINI
Process # of Time (milli-sec)

Cubes Without With

HART HART

INPUT _COVER 18 655 654
EXPAND 11 13034 7829
DELETE 11 2923 905
ESSENTIAL 0 17324 4579
REDUCE 11 7881 7882
RESHAPE 11 490 490
EXPAND 10 8892 2763
REDUCE 10 8973 8973
RESHAPE 10 461 a62
EXPAND 10 8124 1895
INPUT_FAT 10 7773 1462
VERIFICATION 10 4223 1678
TOTAL 81421 40190
6.3 Minimization of various PLA’s .

Table 6.3 shows number of cubes after
minimization, number of used words, and cpu time
of MINI2 and TMINI for various PLA’s. MINI2 is an
enhanced wversion of MINI, with essential prime
implicant detection{8] and a fast recursive

complementation algorithm{12].

Both MINI2 and TMINI use the same data struc-
ture. Each cube is represented by a cell: it
consists of n+3 words for n-input single-output
function, and n+k+3 words for n-input m-output
function where k=(m—-1)/16 +1: it has two pointers
and one extra words for miscellaneous use. Each
cover 1is represented by a linked list of cells.
In the FORTRAN compiler we used, the size of each
array must be smaller than or equal to 64k bytes.
Therefore, the maximum size of the LIST we can
declare is DIMENSION LIST(32767). The memory size
shoun in Table 6.3 denotes the maximum number of
words used during minimization, which must be
smaller than 32767. As shown in Table 6.3, TMINI
minimized a large PLAs for which MINI2 failed due
to memory overflow.

6.4 Comparison with other programs.

Table 6.4 compares the minimization quality
and computation time for TMINI with ESPRESSO-II C,
ESPRESSO-11 APL, MINI APL, and POP CCé3].
ESPRESSO s and MINI were run on IBM3081K, and POP
C was run on VAX-11/780. Table S.4 shouws that
TMINI produces as good solutions as ESPRESSO’s and
MINI, and better solutions than POP. MIN shouws the
minimum solution. For PLA's in this table, mini-
mization time with HART were only a few percents
faster than the time without HART. This is because
the volumes of cubes in both the original and
minimized covers are too small to be efficiently
checked by the HART.

Table 6.3 Comparison_with MINI2

INPUT MINIZ2 TMINIZ2
Time(sec)
Memory Cubes Time |[Memory Cubes w/o0 with
In Out Cubes|(words) (sec) | (words) HART HART
SPL10 10 1 i8 1144 10 80 884 10 81 a0
SPL12 12 1 22 1590 12 158 1560 12 199 126
SYE12 12 i 126 [12045 68 2736 8130 66 3072 2023
ACH24 24 1 8 memory overflow 2268 8 31 31
M110 10 4 511 7182 S8 843 16240 S8 467 453
SKA 12 7 7 6400 45 413 4912 a6 369 304
SKB 12 8 132 9568 111 875 7152 113 808 77
0Ké72 17 13 472 memory overflow 16695 186 4129 3959
SEG? 10 23 a0 3375 35 196 3780 35 597 a99
AUG1 16 8 147 |13720 54 725 | 6720 55 480 862
HOASI 14 8 18 3672 18 79 864 i8 20 22

Table 6.4 Compérison with other programs
Input # of cubes
Ess ESS Min POP Tmi MIN
Name In Out Cubes | C APL APL C FOR

ADR4 8 S 255 ?75 ?S 7S ?S 7?5 7S
MLPA 8 8 225 127 127 126 130 125 123x
ROT8 8 S 255 S7 S7 S8 58 57 57
SQR& 6 12 63 S0 49 49 53 49 47
SYMS 9 1 420 87 85 85 148 86 84
total 396 393 393 464 392 386
Computation time (sec)

Ess-C Ess-A Mini-A Pop-C Tmini
Name 3081 3081 3081 VAX 8086
ADR4 3.0 9.3 52.6 114.9 379.8
MLPA 9.0 33.2 269.3 121.0 1345.0
ROT8 3.4 12.6 28.8 53.4 290.3
SQR6& 2.1 11.8 56.3 20.5 263.2
SYM9 4.6 16.3 226.3 212.3 991.7
total 22.1 83.2 633.3 522.1 3270.0

6.5 Oescription of example functions.

The following functions are given by the
truth table with minterms.

ADR n : n-bit adder, 2n-input (n+1)-output.

MLP n : n-bit multiplier, 2n—input 2n~output.

SQR n : n-bit square circuit, a-input, 2n-output.

ROT n : n-bit square root circuit, n-input
((n/2)+1)~output.

SYM n : b-bit symmetric function (n=3m).

SYM n=1 if (m § I xiS 2m).

=0 otheruise.
The following functions are generated by a
HDL translator developed by the author{19].
SPL n ¢ n-bit symmetric function.

wLn=le Ez.wwm
G nr=xyxgecaxy s Boln)=xyxs. ux .
SYE n : n-bit symmetric function.
SYE n= m&' where
S?a(n)=x2x3...xn\/xixa...xn\/xlxz...xn_l.
Qd(n)=x2x3...anx1x3...anxlxz...xn_l.

ACH n : n-bit Achilles’ heel function (n=3m).

ACH n =xyxoxq V xaxgxeV oo Vx _ox _ax .
The following are industrial PLA s.

M110 : Control part of computer.

SKA,SKB : Circuits for clock.

0K672:Mapping table of microprogram for a 16-bit
microprocessor.

SEG? : 7-segment display [17].

AUG1:C183].

HOASI: Hollerith-ASCII converter.

7. Conclusion

1. The tautology checker with HART for n=8 is
about 15 times faster than one without HART
for an expression of 8-variables.

2. Minimization using tautology checker with HART
is about two times faster than one without
HART for an expression of 10-variables.

3. TMINI produced as good solutions as MINI and
ESPRESSO, and minimized large PLA’s for which
MINI2 failed due to memory overflow on a per-—
sonal computer.

4. For larger PLA’s uwith many don’t cares in the
input parts, TMINI with HART for more than 8-
variables is promising.

S. For PLA’s shown in Table 6.4, HART was virtual-
ly of no effect on computation time. This is
because the volume of cubes are too small and
the most computation time are spent by soft-
wvare.

8. Future Project.
. Incr e th iz f the HART.

A HART for n=8 consists of 43 FPLA's, and each
FPLA dissipates 650 mW. So total power dissipation
is about 28W. A HART for n=12 using same FPLA’s
would dissipates about 450U, and so we need to use
CMOS FPLA s to reduce the power. A HART for n=8
can also be easily realized by a LSI chip if we
use gate array technology. In such a case, a HART
for n=12 can be build by using 16 such LSI’s.

2. _HART for multiple—output function.

It is easy to change the configuration of HART
dynamically. A HART with 256 latches check 8-input
1-output function, 7-input 2-output function, 6-
input 4-output function, or S-input 8-output fun-
ction, etc.

3. Application to other minimjzation system.
It is possible to use HART to accelerate
ESPRESS0 s, PRESTO, POP, TAU, ESPRESSO-MVC143,

or PRESTOL-IIC15].

717

4. Hardware for test generation.

In the test generation algorithm, we have to
find an input vector a such that F(2)=0, uhere

F is a sum-of-products expression. The problem
to find such an input vector is NP-complete and
is quite time consuming. We can make a hardware
for this problem in a similar way to HART.
Fig.8.1 shows a hardware for test generation.
The minterm generator part, and the latch part
are same as that of HART.

Zero detection part finds a latch whose output

is zero, and represents its position by a bi-
nary code. If the output T is equal to 1, then
the given function is tautology and there is no
test. Table 8.1 shows the truth table of the
PLA for this part.

Table 8.1 Zero detection part

<
(=]

vyl y2 y3 y4 yS yé6 y7? TvYa Y2 Y1

e e O
e e e O

P00
=SSR, ,O000 |
e, 0000 1
,PERPRPOO000O0)
000000 |
LPOOOOOOO |
LPOO0OO0OO0OOO0O0OO0O
Ok, OOO0O0O0
OrrooOrrroo
OO~ OrOFRrO

Acknowledgement

The author thanks to the engineers of KUBOTA
Ltd. for their co-operation to build HART. He
also thanks to Prof. G.Hachtel for his comments on
the tautology checker[13]. This work was supported

by Grant in Aid for Scientific Research of the
Ministry of Education, Science , and Culture of
Japan.

0 xI L0 1 0 .1
X; Xy x5 x2 o x2 x
1 1 2 2 3 3 Latch Part

€13

€21

€31

cal

€33

Cé3

73

€81

£33

€101

113

€123

£131]

Minterm Generation Y2 f Zero-detection

Part Y3 part

143

£151

£163]

€173

£183

2193

br T

T Y3 Y2 11

Fig.8.1 Hardware for test generation

718

Reference

H-F.S. Law and M.Shoji, 'PLA design for the
BELLMAC-32A microprocessor',ICCC-82,pp.161-
164, September 1982.

R.K. Brayton and C. McMullen, ‘Synthesis and
optimization of multistage logic,® ICCD-84,
pp.23-28, 1984.

D.W.Brown, ‘A state-machine synthesizer --
SMS, " Proc. of 18-th Design Automation confe-
rence , June 1981.

G. DeMicheli, M.Hofmann, R. Newton, and A.
Sangiovanni-Vincentelli, A system for the
automatic synthesis of programmable logic
arrays, in Advances in Computer-Aided Engi-
neering. A. Sangiovanni-Vincentelli editor,
Jay Press, 1984.

A. Poretta, M.Santomauro, and F.Somenzi, ' TAU:
A fast heuristic logic minimizer,' [CCAD-84,
November 1984.

R.K. Brayton, G.D. Hachtel, C.T. McMullen,
and A.L. Sangiovanni-Vincentelli, Logic Mini-
mization Algorithms for VLSI Synthesis, Klu-
wer Academic Publishers, 1984.

S.J.Hong, R.G.Cain and D.L.Ostapko, 'MINI: A
heuristic approach for logic minimization,"
IBM J. of Res. and Dev., vol,18, pp.443-458,
September 1974.

T. Sasao, ‘Input variable assignment and
output phase optimization of PLA's’ IEEE
Trans. on Comput., vol. C-33, No.10, pp.879-
894, October 1984.

T.Sasao, S.J.Hong, and R.K. Brayton, ‘Minimi-
zation of PLA's by decomposition,’ (in prepa-
ration).

T.Sasao, ‘Tautology checking algorithm for
multi-valued input binary functions and their
application,’ Inter. Sympo. on Multiple-
valued Logic, pp.242-250, May 1984.

T.Sasao, A hardware for logic minimization,"
(in Japanese), The 9-th Workshop on FTC, July
1983,

T.Sasao, 'An algorithm to derive the comple-
ment of a binary function with multiple-
valued input,® [EEE Trans. on Comput., wol.
C-34, No.2, pp.131-140, Feb. 198S.

G.Hachtel, 'Algorithms for multi-level tauto-
logy and equivalence,'ISCAS 85,pp.1277-1280,
June 1985.

R.L.Rudell and A.L.M.Sangiovanni-Vincentelli
*ESPRESSO-MV: Algorithms for multiple-valued
logic minimization, " Custom Integrated
Circuit Conference, pp.230-234, May 198S.
M.Bartholomeus and H.De Man, "PRESTOL-11: Yet
another lcgic minimizer for programmed logic
arrays’, ISCAS 58, pp.447-450, June 198S.
M.R.Garey and D0.S.Johnson, Computers and
Intractability, W.H.Freeman and Company, San
Francisco, 1979.

W.N Carr and J.P.Mize, MOS/LSI Design and
Application, McGraw-Hill, 1972,New York
p.241.F1g8.9(c).

M.Auguin, F.Boeri, and C.Andre, An algorithm
for designing multiple Boolean functions:
application to PLA's',Digital Process 4,3-4,
p.227, 1978.

T.Sasao, "A logic synthesis and analysis
system on a personal computer, '(in Japanese)
The 13-th Workshoer on FTC, July 1984.

