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Abstract— In an incompletely specified function f , don’t care
values can be chosen to minimize the number of variables to
represent f . It is shown that, in incompletely specified functions
with k 0’s and k 1’s, the probability that f can be represented
with only p = 2�log2(k + 1)� variables is greater than e−1 =
0.36788. In the case of multiple-output functions, where only the
outputs for k input combinations are specified, most functions
can be represented with at most p = 2�log2(k+1)�−1 variables.
Experimental data is shown to support this. Because of this
property, an IP address table can be realized with a small amount
of memory.

I. INTRODUCTION

For completely specified logic functions, logic minimization
is a process of reducing the number of products to represent the
given function. However, for incompletely specified functions
(i.e., functions with don’t cares), at least two problems exist
[6]: The first is to reduce the number of the products to
represent the function, and the second is to reduce the number
of variables. The first problem is useful for sum-of-products
expression (SOP)-based realizations [2], while the second
problem is useful for memory-based or LUT (look-up table)-
based realizations.

Example 1: Consider the four-variable function shown in
Fig. 1, where the blank cells denote don’t cares. The SOP
with the minimum number of products is F1 = x1x4 ∨ x2x̄3,
while the SOP with the minimum number of variables is F2 =
x1x2∨x1x4∨x2x4. Note that F1 has two products and depends
on four variables, while F2 has three products and depends
on only three variables. x3 is a non-essential variable, since
F2 does not include it. (End of Example)
As shown in this example, the minimization of the number
of products is different from the minimization of the number
of variables. In this paper, we consider the minimization of
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Fig. 1. Four-variable incompletely specified logic function.

the number of variables. Especially, we are interested in the
number of variables to represent logic functions whose values
are specified for k combinations, where k is small.

The rest of the paper is organized as follows: Section II
gives definitions and basic properties. Section III formulates
the minimization problem of the variables in the single-
output incompletely specified functions. Also, it shows that
p = 2�log2(k + 1)� variables are sufficient to represent
most incompletely specified single-output functions, where
k combinations are mapped into 0, k combinations mapped
to 1, and the other 2n − 2k combinations are mapped to
don’t cares. Section IV extends the theory to the multiple-
output case. First, it introduces index generation functions,
and derives the number of variables to represent an index
generation function with k specified vectors. Then, it shows
that 2�log2(k+1)�−1 variables are sufficient to represent such
a function in most cases. And, finally, it extends to general
multiple-output functions. Section V shows an algorithm to
minimize the number of variables to represent index generation
functions. Section VI shows a method to convert a completely
specified index generation function into an incompletely spec-
ified one. With this method, we can drastically reduce the
size of memories. Section VII shows a method to reduce
the number of variables by a linear transformation of the
input variables. Section VIII shows experimental results for
randomly generated functions, IP address tables, and multiple-
output PLA benchmark functions. Finally, Section IX con-
cludes the paper.

II. DEFINITIONS AND BASIC PROPERTIES

Definition 1: An incompletely specified logic function f
is a mapping D → B, where D ⊂ Bn, B = {0, 1}.

Definition 2: An incompletely specified logic function is
represented by a pair of characteristic functions F0 and F1,
where F0(a) = 1 iff f(a) = 0, and F1(a) = 1 iff f(a) = 1.
Note that F0F1 = 0. If a ∈ Bn − D, then the value of f(a)
is unspecified, and is denoted by d (don’t care).

Definition 3: Variables are represented by xi (i =
1, 2, . . . , n). A literal of a variable xi is either xi, x̄i or the
constant 1. An AND of literals is a product term, and an OR
of products is a sum-of-products expression (SOP).

Example 2: Consider the function in Fig. 1. In this case
n = 4. Table I also shows this function. The characteristic
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TABLE I
FUNCTION FOR FIG. 1.

x1 x2 x3 x4 f
0 0 0 1 0
0 1 1 0 0
1 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 0 0 1
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Fig. 2. Four-variable function without essential variables.

functions are

F0 = x̄1x̄2x̄3x4 ∨ x̄1x2x3x̄4 ∨ x1x̄2x̄3x̄4 and
F1 = x̄1x2x̄3x4 ∨ x1x̄2x̄3x4 ∨ x1x2x̄3x̄4.

In this case, the function is specified for only 6 minterms.
(End of Example)

Definition 4: f depends on xi if there exists a pair of
vectors

a = (a1, a2, . . . , ai, . . . , an) and
b = (a1, a2, . . . , bi, . . . , an),

such that both f(a) and f(b) are specified, and f(a) �= f(b).
If f depends on xi, then xi is essential in f , and xi must
appear in every expression for f .

Definition 5: Two functions f and g are compatible when
the following condition holds: For any a ∈ Bn, if both f(a)
and g(a) are specified, then f(a) = g(a).

Lemma 1: Let f0 = f(|xi = 0) and f1 = f(|xi = 1).
Then, xi is non-essential in f iff f0 and f1 are compatible.
If xi is non-essential in f , then f can be represented by an
expression without xi.

Example 3: Consider the function f in Fig. 2. It is easy
to verify that all the variables are non-essential. Note that
f can be represented as F1 = x̄2 ∨ x3 or F2 = x1 ⊕ x̄4.

(End of Example)
Essential variables must appear in every expression for f ,
while non-essential variables may appear in some expressions
and not in others. Algorithms to represent a given function by
using the minimum number of variables have been considered
[1], [4], [5], [6].

III. ANALYSIS FOR SINGLE-OUTPUT LOGIC FUNCTIONS

In this section, we derive the number of variables to rep-
resent single-output incompletely specified logic functions. In
the analysis that follows, we consider a set of functions (e.g.,

all incompletely specified functions) restricted by conditions
(e.g. the number of care values is 2k).

Definition 6: A set of functions is uniformly distributed,
if the probability of occurrence of any function is the same as
any other function.
For example, the set of 4-variable incompletely specified
functions with 1 care value consists of 32 members, 16 having
a single 1 and 16 having a single 0. If the functions are
uniformly distributed, the probability of the occurrence of any
one of them is 1

32 .
Theorem 1: Consider a set of uniformly distributed incom-

pletely specified function, where k combinations are mapped
to 0, k combinations mapped to 1, and the other 2n − 2k
combinations are mapped to don’t cares. Then, the probabil-
ity that f(x1, x2, . . . , xn) can be represented by using only
x1, x2, . . . , xp−1, and xp, where p = 2�log2(k+1)�, is greater
than e−1 = 0.36788.

Proof: Let f(X1, X2) be an incompletely speci-
fied function, where X1 = (x1, x2, . . . , xp) and X2 =
(xp+1, xp+2, . . . , xn). Consider the decomposition table of
f(X1, X2), where X1 labels the columns, and X2 labels the
rows. If no column has both 0 and 1, a completely specified
function can be formed by setting all column entries to the
same value, yielding a function independent of X2. From here,
we obtain the probability PR.
Step 1: Assume that k 0’s are already distributed to the
decomposition table. Thus, at most k columns have 0’s. Next,
we distribute k 1’s to the decomposition table. The probability
of distributing a single 1 to a column not containing 0’s is at
least 2p−k

2p = 1−α. Thus, the probability of distributing k 1’s
to the columns without 0’s is larger than or equal to (1−α)k.
Hence, we have the relation:

PR ≥ (1 − α)k. (1)

Step 2: Next, we show that (1−α)k > e−1. When 0 < α <<
1, 1 − α is approximated by e−α. Thus, (1 − α)k ≈ e−αk.
When p = 2�log2(k+1)�, we have 2p ≥ (k+1)2 > k2. Thus,
we have k2

2p < 1. Therefore, e−αk = e−
k2
2p > e−1, and

(1 − α)k > e−1. (2)

From (1) and (2), we have the theorem.
Theorem 1 shows a typical property of the randomly

generated functions. Note that there exist functions that require
more than p = 2�log2(k + 1)� variables, as shown below.
However, we conjecture that the fraction of such functions is
very small.

Example 4: Consider the n-variable function f(X) such
that f(a1, a2, . . . , an) = 0, when

∑n
i=1 ai = 0,

f(a1, a2, . . . , an) = 1, when
∑n

i=1 ai = 1, and
f(a1, a2, . . . , an) = d, when

∑n
i=1 ai ≥ 2. In this case, all

the variables are essential. (End of Example)
In Theorem 1, variables are selected in a natural order
without considering the properties of functions, i.e., X1 =
(x1, x2, . . . , xp) and X2 = (xp+1, xp+2, . . . , xn). However,
in practice, we can select a minimum set of variables to
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TABLE II
REGISTERED VECTOR TABLE.

Vector Index
1001 1
1111 2
0101 3
1100 4

represent the function. So, the number of variables to represent
the function can be less than 2�log2(k + 1)�. From the
experimental results in Section VIII, we have the following:

Conjecture 1: Consider a set of uniformly distributed func-
tions of n variables, where k combinations are mapped to
0, k combinations are mapped to 1, and the other 2n − 2k
combinations are mapped to don’t cares. Then, most functions
can be represented with at most p = 2�log2(k + 1)� − 2
variables.

IV. EXTENSION TO MULTIPLE-OUTPUT FUNCTIONS

In practical applications, many functions have multiple
outputs, and the outputs values are different for different
inputs. So, we now consider such a class of functions. First,
we consider the class of index generation functions, which are
special case of multiple-output functions. Then, we extend the
theory into general multiple-output functions.

A. Index Generation Functions

Index generation functions 1 are used for IP address lists for
Internet [12], memory patch circuits, password lists, etc [8].

Definition 7: Consider a set of k different binary vectors
of n bits. These vectors are registered vectors. For each
registered vector, assign a unique integer from 1 to k. A regis-
tered vector table shows the index of each registered vector.
An index generation function produces the corresponding
index if the input matches a registered vector, and produces 0
otherwise. k is the weight of the index generation function.
In this paper, we assume that k is much smaller than 2n, the
total number of input combinations.

Example 5: Table II shows a registered vector table consist-
ing of 4 vectors. The corresponding index generation function
produces the index represented by a 3-bit number (e.g., 001)
of a matched vector. When no entry matches the input vector,
the function produces 000. (End of Example)

B. Number of Variables to Represent Index Generation Func-
tions

In this section, we derive the number of variables to repre-
sent an incompletely specified index generation function with
k registered vectors. The basic idea is as follows: a function
f(X1, X2) is represented by a decomposition table, where X1

labels the columns and X2 labels the rows. If each column has
at most one care element, then the function can be represented
by using only variables in X1. The next example illustrates
this.

1Index generation functions were called address generation functions in
previous publications [8], [9], [10].
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Fig. 3. Decomposition table of a four-variable function.

Example 6: Consider the decomposition table shown in
Fig. 3. It shows exactly the same function as Fig. 1, but it has a
different labeling of variables. In Fig. 1, x1 and x2 specify the
columns, while in Fig. 3, x1, x2, and x4 specify the columns.
Note that in Fig. 3, each column has at most one care element.
Thus, the function can be represented by only the variable for
columns: x1x2 ∨ x1x4 ∨ x2x4. (End of Example)
From here, we obtain the probability of such a condition by
a statistical analysis.

Theorem 2: Consider a set of uniformly distributed index
generation functions f(x1, x2, . . . , xn) with weight k, where
2 ≤ k < 2n−2. When k ≤ 30000, the probability that f can
be represented with x1, x2, . . . , and xp, where p = 2�log2(k+
1)� − 1, is greater than 0.3628.

Proof: Let (X1, X2) be a partition of the input
variables X , where X1 = (x1, x2, . . . , xp) and X2 =
(xp+1, xp+2, . . . , xn). Consider the decomposition table for
f(X1, X2), where X1 labels the column variables and X2

labels the row variables. If each column has at most one care
element, then f can be represented by using only X1. Assume
that k care elements are distributed in the decomposition table.
Then, the probability that each column has at most one care
element is

PR =
2p

2p
· 2p − 1

2p
· 2p − 2

2p
· · · · · 2p − (k − 1)

2p

= 1 · (1 − 1
2p

) · (1 − 2
2p

) · · · · · (1 − k − 1
2p

)

=
k−1∏

i=0

(1 − i

2p
).

That is, in such a distribution, ‘1’ can be placed in any column,
‘2’ can be placed in any column except that for ‘1’, etc. By
exhaustive examination of the numerical values of PR for
1 ≤ k ≤ 30000, we have the lemma.
The above theorem shows the case when the input variables
are removed without considering the property of the function.
In practice, we can remove the maximum number of non-
essential variables by an optimization program. Thus, in
many cases, the number of necessary variables is smaller
than 2�log2(k + 1)� − 1. From the experimental results in
Section VIII, we have the following:

Conjecture 2: Consider a set of uniformly distributed index
generation functions with weight k. In most cases, an index
generation function can be represented by at most p =
2�log2(k + 1)� − 1 variables.
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C. Number of Variables to Represent General Multiple-Output
Functions

Theorem 3: Let F be an arbitrary n input m output func-
tion, and let D be a set of k randomly selected vectors in Bn.
Let F̂ be the incompletely specified functions defined on only
D. When k ≤ 30000, the probability that F̂ can be represented
with x1, x2, . . . , and xp, where p = 2�log2(k + 1)� − 1, is
greater than 0.3628.

Proof: For each vector in D, assign a unique index
(1, 2, . . . , k). From D, we can define an incompletely specified
index generation function: D → {0, 1, 2, . . . , k}. Next, for
each vector in D, obtain the output value of F , and make
a truth table showing the function {1, 2, . . . , k} → Bm.
Note that this function can be implemented by memory with
�log2(k+1)� inputs. Thus, the incompletely specified function
F̂ can be realized as the cascade connection of the index
generation circuit and the memory.

By Theorem 2, the index generation function can be repre-
sented with at most 2�log2(k + 1)� − 1 variables. Thus, the
function F̂ can be also represented with at most 2�log2(k +
1)� − 1 variables.
From the experimental results in Section VIII, we have the
following:

Conjecture 3: When k minterms are selected randomly, in
most cases, a multiple-output functions defined for only the k
minterms can be represented by at most p = 2�log(k+1)�−1
variables.

V. ALGORITHM TO MINIMIZE THE NUMBER OF
VARIABLES

In this part, we consider an algorithm to represent an
incompletely specified index generation function f : D →
{0, 1, . . . , k}, where D ⊂ Bn by using the least number
of variables. To show the idea of the method, we use the
following:

Example 7: Let us minimize the number of variables to
represent the index generation function shown in Table II.

1) Let the four vectors be �a1 = (1, 0, 0, 1), �a2 = (1, 1, 1, 1),
�a3 = (0, 1, 0, 1), and �a4 = (1, 1, 0, 0).

2) To distinguish �a1 and �a2, either x2 or x3 is necessary.
This derives the condition x2 ∨ x3. In the same way, to
distinguish �a1 and �a3, we need x1 ∨ x2; to distinguish
�a1 and �a4, we need x2∨x4; to distinguish �a2 and �a3, we
need x1∨x3; to distinguish �a2 and �a4, we need x3∨x4;
and to distinguish �a3 and �a4, we need x1 ∨ x4.

3) To distinguish all the vectors, all the conditions must
hold at the same time. Thus, we have R = (x2∨x3)(x1∨
x2)(x2 ∨ x4)(x1 ∨ x3)(x3 ∨ x4)(x1 ∨ x4)

4) By the distributive law, and the absorption law, we have
R = x1x2x4 ∨ x1x2x3 ∨ x2x3x4 ∨ x1x3x4.

5) Since every product has three literals, each corresponds
to a minimum solution. Thus, f can be represented by
three variables. (End of Example)

In principle, the above method produces the minimum number
of variables to represent an incompletely specified index
generation function. However, the straightforward application
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Fig. 4. A circuit for index generation function.

is quite inefficient. Also, we have an efficient minimization
algorithm for SOPs, but do not have one for product-of-sums
expressions. Thus, instead of obtaining R directly, first we
obtain R̄, the complement of R, and perform simplification,
and then convert R̄ into the SOP for R as follows:

Algorithm 1: (Algebraic Method)
1) Let A be the set of vectors �ai, such that f(�ai) = i,

where i = 1, 2, . . . , k
2) For each pair of vectors �ai = (a1, a2, . . . , an) ∈ A and

�bj = (b1, b2, . . . , bn) ∈ A, associate a product defined
by s(i, j) =

∧n
r=1 yr, where yr = 1 if ar = br and

yr = x̄r if ar �= br, where r = 1, 2, . . . , n. Note that
there are k(k − 1)/2 pairs.

3) Define a covering function R̄ =
∨

i<j s(i, j).
4) Represent R̄ by the a minimum SOP.
5) Represent R, the complement of R̄ by a minimum SOP.
6) The product with the fewest literals corresponds to the

minimum solution.
In Algorithm 1, Steps 4, 5, and 6 perform a minimum covering.
In our implementation, we solve it by a sparse matrix data
structure instead of the algebraic method. For each product sj

in Step 2, assign column j, and for each variable xi assign
a row i. The entry (i, j) in the covering table has 1 iff the
product sj has the literal xi. Thus, the original covering table
has n rows and k(k−1)

2 columns. Thus, the reduction of the
number of columns is vitally important. Since the covering
function R̄ is a negative unate, we generate only products that
are not absorbed by other products. The resulting covering
table is smaller than ones for minimization of SOPs [3].

VI. A CIRCUIT FOR INDEX GENERATION FUNCTIONS

Here, we consider methods to implement index generation
functions. A software-based method is too slow for internet ap-
plications. A straightforward method is to use a programmable
logic array (PLA) or content addressable memory (CAM).
Unfortunately, PLAs and CAMs dissipate much more power
and require more area than RAMs [11]. So, we consider a
memory-based design.

Fig. 4 shows a circuit to implement an index generation
function. The programmable hash circuit has n inputs and at
most 2�log2(k+1)�−1 outputs. It is used to rearrange the care
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elements. We consider two types of programmable hash cir-
cuits. The first type is the double-input hash circuit shown in
Fig. 5. It performs a linear transformation yi = xi⊕xj or yi =
xi, where i �= j. It uses a pair of multiplexers for each variable
yi. The upper multiplexers have the inputs x1, x2, . . . , xn. The
lower multiplexers have the inputs x1, x2, . . . , xn, except for
xi. For the i-th input, the constant input 0 is connected instead
of xi. By setting yi = xi ⊕ 0, we can implement yi = xi.
The second type of a programmable hash circuit is the single-
input hash circuit shown in Fig. 6. It consists of only p
multiplexers, and selects p = 2�log2(k + 1)� − 2 variables
from n input variables. The main memory has at most
2�log2(k+1)�−1 inputs and �log2(k+1)� outputs. The main
memory produces correct outputs only for registered vectors.
However, it may produce incorrect outputs for non-registered
vectors, because the number of input variables is reduced by
using don’t care conditions. In an index generation function,
if the input vector is non-registered, then it should produce
0 outputs. To check whether the main memory produces the
correct output or not, we use the AUX memory. The AUX
memory has �log2(k + 1)� inputs and n outputs: It stores the
registered vectors for each index. The comparator checks if
the inputs are the same as the registered vector or not. If they
are the same, the main memory produces a correct output.
Otherwise, the main memory produces a wrong output, and
the input vector is non-registered. Thus, the output AND
gates produce 0 outputs, showing that the input vector is non-
registered. Note that the main memory produces the correct
outputs only for the registered vectors. In this way, we can
implement an incompletely specified index generation function
instead of a completely specified one 2 in the main memory.
Let m = �log2(k+1)�. Then, the number of bits for the main
memory is m22m−1 ≈ 1

2m(k+1)2. The number of bits for the
AUX memory is n2m ≈ n(k+1). In many cases, 1

2km >> n,
thus, the size of the AUX memory is much smaller than that
of the main memory.

2The output AND, the AUX memory and the comparator are used to
establish observability don’t cares for the main memory.

VII. REDUCTION OF THE NUMBER OF VARIABLES BY A
LINEAR TRANSFORMATION

As shown in Conjecture 2, most incompletely specified
index generation functions with weight k can be represented
by at most p = 2�log2(k + 1)� − 1 variables. However, there
exist functions that require more variables. Example 4 shows
such a function. In such a case, we can often reduce the
number of variables by a linear transformation of the input
variables.

Example 8: Consider the incompletely specified index gen-
eration function f(x1, x2, x3, x4), where f(0, 0, 0, 0) = 1,
f(1, 0, 0, 0) = 2, f(0, 1, 0, 0) = 3, f(0, 0, 1, 0) = 4, and
f(0, 0, 0, 1) = 5. Note that all the variables are essential
in f . Now, replace the variables x1, x2, x3, and x4 with
y1 = x1 ⊕ x4, y2 = x2 ⊕ x4, y3 = x3, and y4 = x4,
respectively. Then, f can be represented as the index gen-
eration function g(y1, y2, y3, y4) whose registered vectors are
(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (1, 1, 0, 1).
Note that g can be represented by using only y1, y2, and
x3, since they can uniquely specify 5 different patterns. The
programmable hash circuit in Fig. 6 performs this linear
transformation. (End of Example)
We have developed a heuristic algorithm to find a linear
transformation that reduces the number of variables, when the
double-input hash circuit is used. To find a linear transforma-
tion that reduces the maximum number of variables, we use
the following:

Theorem 4: Let f(x1, x2, . . . , xn) be an incompletely spec-
ified index generation function with weight k. Let Y1 =
(y1, y2, . . . , yp), where yi = xi ⊕ xj and j ∈ {p + 1, p +
2, . . . , n}, and X2 = (xp+1, xp+2, . . . , xn). Consider the
transformed function g(Y1, X2) = f(X1, X2). Then, f can
be represented by using only Y1, if and only if the column
multiplicity of the decomposition table (Y1, X2) is k + 1.

VIII. EXPERIMENTAL RESULTS

A. Random Single-Output Functions

For different n, we randomly generated 1000 functions,
where k combinations are mapped to 0, k combinations are
mapped to 1, and the other 2n − 2k combinations are mapped
to don’t cares. We minimized the number of variables by an
exact optimization algorithm, which is similar to Algorithm 1
shown in Section V. Table III shows the average numbers of
variables to represent the single-output functions, where the
set of variables are selected by the optimization algorithm.
For example, 16-variables functions where 15 minterms are
mapped to zeros, 15 minterms are mapped to ones, and
the other minterms are mapped to don’t cares, require, on
the average, only 5.157 variables to represent the functions.
Table III shows that the necessary number of variables to
represent the functions mainly depends on k. The last column
of the table shows the number of variables to represent in-
completely specified functions by Conjecture 1. For example,
when k = 15, to represent a uniformly distributed function,
Conjecture 1 shows that 6 variables are sufficient. On the
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TABLE III
AVERAGE NUMBERS OF VARIABLES TO REPRESENT SINGLE-OUTPUT

LOGIC FUNCTIONS WITH k 1’S AND k 0’S.

k n = 16 n = 20 n = 24 2�log2(k + 1)� − 2
15 5.157 4.981 4.940 6
31 7.126 6.980 6.003 8
63 9.179 8.972 8.861 10

127 11.362 10.971 10.776 12
255 13.754 12.990 12.725 14
511 15.739 15.098 14.805 16

1023 16.000 17.508 16.918 18
2047 16.000 19.705 18.996 20
4095 16.000 20.000 21.394 22
8191 16.000 20.000 23.630 24

TABLE IV
AVERAGE NUMBER OF VARIABLES TO REPRESENT INCOMPLETELY

SPECIFIED INDEX GENERATION FUNCTION.

k n = 16 n = 20 n = 24 2�log2(k + 1)� − 1
Conjecture 2

15 4.980 4.947 4.878 7
31 6.447 6.115 6.003 9
63 8.257 8.007 8.000 11

127 10.304 10.000 9.963 13
255 12.589 11.996 11.896 15
511 14.890 14.019 13.787 17

1023 15.991 16.293 15.874 19
2047 16.000 18.758 17.965 21
4095 16.000 19.992 20.093 23

other hand, experimental results show that only 4, 5, or 6
variables are necessary to represent the functions. We note
that the variance is very small.

B. Random Index Generation Functions

We generated uniformly distributed index generation func-
tions. Table IV shows the average numbers of variables to rep-
resent n-variables index generation functions with k registered
vectors. For the other 2n−k combinations, the outputs are set
to don’t cares. The values are the average of 1000 randomly
generated functions. Table IV shows that the necessary number
of variables to represent the functions strongly depends on k.

The last column of Table IV shows the number of variables
to represent incompletely specified index generation functions
with weight k given by Conjecture 2. For example, when
k = 31, to represent a uniformly distributed function, Con-
jecture 2 shows that 9 variables are sufficient. On the other
hand, experimental results show that only 6 or 7 variables are
necessary to represent the functions. Again, the variance is
very small.

C. IP Address Table

To verify the effectiveness of the method in the practical
applications, we used distinct IP addresses of computers that
accessed our web site over a period of a month. We considered
four lists of different sizes: List 1, List 2, List 3, and List 4.
Table V shows the results. The first row shows the number of
registered vectors: k. The second row shows the number of
inputs: n. The third row shows the number of outputs: m =

TABLE V
REALIZATION OF IP ADDRESS TABLES.

List 1 List 2 List 3 List 4
# of vectors: k 1670 3288 4591 7903
# of inputs: n 32 32 32 32
# of outputs: m 11 12 13 13
2�log2(k + 1)� − 1 21 23 25 25
# of variables using
Single-input hash: ns 18 20 21 23
# of variables using
Double-input hash: nd 17 19 20 21
Single-memory
realization ( ×1010 bits) 4.72 5.15 5.58 5.58
Realization using Single-
input hash (×106 bits) 2.95 12.7 27.5 109.3
Realization using Double-
input hash (×106 bits) 1.51 6.3 13.9 27.5
CPU Time (sec) 14.3 35.2 7.9 52.3

�log2(k + 1)�. The fourth row shows the number of variables
sufficient to represent the functions given by Conjecture 2,
i.e., 2�log2(k + 1)� − 1. The fifth row shows the number
of variables to represent the function, where the number of
variables is minimized by Algorithm 1. In this case, selected
input variables are connected to the main memory through the
single-input hash circuit shown Fig. 6. The sixth row shows the
number of variables to represent the function, where a linear
transformation is used to reduce the number of variables. In
this case, a double-input hash circuit shown in Fig. 5 is used.
The seventh row shows the number of bits to represent the
function by a single memory: m2n. The eighth row shows
the total number of bits to represent the function by using
the single-input hash circuit shown in Fig. 6: m2ns + n2m,
where the first term denotes the size of the main memory,
while the second term denotes the size of the AUX memory.
The ninth row shows the total number of bits to represent
the function by using the double-input hash circuit shown in
Fig. 5: m2nd +n2m. And, the last row shows the cpu time for
Algorithm 1. We used a PC with an Intel Core 2 Duo Processor
E6600, 2.4 GHz on Windows XP. As shown in Table V, the
total amount of memory can be drastically reduced.

D. Benchmark Multiple-Output Functions

We reduced the number of variables for selected PLA
benchmark functions [13]. Table VI shows the numbers of
variables to represent benchmark functions (bc0, chkn, in2,
in7, intb, and vg2) for different values of care minterms k. In
the table, n denote the number of original input variables, m
denotes the number of outputs, and q denotes the number of
products in the PLA. Out of 2n combinations, we randomly
selected k different combinations as care minterms, and set
other 2n − k minterms to don’t cares. Then, minimized the
number of variables. From the table, we observe that the
number of variables strongly depends on k, but virtually
independent of n, m, q, and function name. Again, for these
benchmark functions, the upper bounds on the number of
products given by the Conjecture 3 are valid.
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TABLE VI
NUMBER OF VARIABLES TO REPRESENT INCOMPLETELY SPECIFIED

MULTIPLE-OUTPUT PLA BENCHMARK FUNCTIONS.

k bc0 chkn in2 in7 intb vg2 2�log2(k + 1)� − 1
n=26 n=29 n=19 n=27 n=15 n=25
m=11 m=7 m=7 m=10 m=7 m= 8 Conjecture 3
q=179 q=142 q=135 q=55 q=631 q=110

15 4 4 4 4 5 4 7
31 6 5 6 6 7 6 9
63 8 7 7 8 8 7 11

127 9 9 8 8 10 9 13
255 11 10 9 10 12 11 15
511 12 12 10 12 14 13 17

1023 14 14 13 13 15 14 19

IX. CONCLUSION AND COMMENTS

In this paper, we have derived the number of variables
to represent incompletely specified functions. For random
functions with a small number of care minterms, the necessary
numbers of variables only depend on the number of the care
minterms, and the variance is very small. This applies for
both single and multiple output functions. An index generation
function with k registered vectors can be represented by at
most 2�log2(k + 1)� − 1 variables, in most cases.

We have presented a method to implement incompletely
specified index generation functions, instead of a completely
specified ones. Furthermore, we have shown a method to
reduce the number of variables by a linear transformation of
the input variables. With these methods, we can implement
an index generation function by memories with fewer inputs.
Various methods exist to implement index generation functions
[8], [9], [10]. Although the presented method may take more
time to reconfigure, the circuit is simpler than [9], [10].
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