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ABSTRACT
The radio telescope analyzes a radio frequency from celestial
objects by using fast Fourier transform (FFT). In this ap-
plication, its bandwidth f is wider than that of the typical
FFT. Since the amount of hardware for the typical FFT cir-
cuit is proportional to the bandwidth f , a special technique
is necessary for this application. This paper shows a realiza-
tion of wideband FFT for the radio telescope on an FPGA.
We show that the memory size for the conventional FFT,
which consists of the twiddle factor memory and the trans-
pose memory, is too large. We replace the twiddle factor
memory with the pipelined CORDIC. To reduce the num-
ber of transpose memories, we increase the radix of the FFT
from 22 to 2k, also we use the DDR2SDRAM to implement
the transpose memory. We implement the 230-FFT on an
Altera’s Stratix IV GX530 FPGA. It performs the 230-FFT
operations in 1.5 seconds. Compared with the Altera’s FFT
library, our FFT circuit realizes 214 times wider bandwidth
on the same FPGA. Also, compared with Tesla S1070 uti-
lizing four GPUs, our FFT circuit is faster and dissipates
lower power.

1. INTRODUCTION
1.1 Radio Astronomy and Radio Telescope

Radio Astronomy studies celestial objects at the radio fre-
quency (RF). In 1931, Karl Jansky observed the RF (14.6
meter wave length) coming from the Milky Way. Since then,
observation of the RF by the radio telescope found that ce-
lestial objects take a different stance in the RF unlike in the
visible light. The development in radio astronomical obser-
vatory is expected to help us learn more about the newborn
Galaxy in early universe, a birth of a star, an evolution of
materials in space, and so on.

Nowadays, the SKA (Square Kilometer Array) develops
a next generation radio telescope with a large collecting
area (a square kilometer) for the RF [19]. Fig. 1 shows a
typical radio telescope. First, the antenna receives the RF
coming from the celestial objects. Then, the feedhone sends
the electromagnetic wave to the receiver through the waveg-
uide. Next, the receiver transforms it to the intermediate
frequency (IF) by using the amplifier and the mixer. Fi-
nally, the spectrometer converts the voltage wave to the
power spectrum.

The early spectrometer uses the filter bank consisting of
many analog filters for the specified frequency. However, in
the filter bank spectrometer, the bandwidth is too narrow.
Next, the acousto-optical spectrometer (AOS) based on the
diffraction of light at ultrasonic waves has been developed.
However, in the AOS, it is difficult to adjust non-linear
characteristics in the analog device (such as piezo element).
Nowadays, digital spectrometers are used for a wide range of
radio telescopes. Fig. 1 also shows the digital spectrometer.
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First, the analog-to-digital converter (ADC) converts the IF
voltage wave to the digital signal. Then, the Fourier trans-
form unit performs the fast Fourier transform (FFT)
to obtain the spectrum. Finally, the magnitude unit calcu-
lates the power spectrum. The computation of magnitude
is a light task, while that of Fourier transform is a heavy
task. Thus, in the digital spectrometer, the Fourier trans-
form hardware is needed.

1.2 Requirement and Problem of Wideband
Analysis

Recently, benefits for the wideband analysis of the RF
have been reported [8]. The first benefit is the expansion of
measurement range of physical parameter by obtaining the
wideband spectrum. For example, by obtaining spectrum
for atoms, bright lines from ionized gas, we can investigate
new gas component and measurement of temperature be-
tween the stars. The second benefit is the improvement of
sensitivity of the radio telescope. The noise of the measure-
ment data is proportional to 1√

f
, where f is the bandwidth.

Thus, the increase of f enhances the sensitivity. As a result,
we can detect more dark stars.
Given the fixed number of points N , wider bandwidth

decreases the resolution ∆f (Fig. 2 (a)). This causes mea-
surement errors. For example, the SERENDIP (Search for
Extraterrestrial Radio Emissions from Nearby Developed In-
telligent Populations), which is one of a SETI (Search for
Extra-Terrestrial Intelligence) project [18], uses the SETI
spectrometer analyzing f = 200 MHz bandwidth with
∆f = 2 Hz in one second [16]. Thus, it requires the 227-
point FFT operation. In other instance, to detect Zeeman
effect (∆f = 1963.27 Hz) in the OH emission line (f =
1.66 GHz) for interstellar gas, it requires at least the 220-
point FFT operation. Therefore, in the radio telescope,
a large N is required (Fig. 2 (b)). Table 1 compares N
for the radio telescope with that for commercial purpose
FFTs. The FPGA implementation of the conventional FFT
requires O(log2N) multipliers and O(Nlog2N) bits of mem-
ory [23]. Table 1 implies that, for the radio telescope, the
memory for the conventional FFT would be too large to
implement.
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Table 1: Comparison of the number of points N .
Application N

Commercial Baseband 3GPP 210 − 211

Purpose [22] OFDM 28

CT scanner 210 − 213

High Quality Sound 29

Radio SETI Spectrometer 227

Telescope Zeeman Effect Observation 220

1.3 Limitation for Radio Telescope
Since the RF from celestial objects is absorbed by water

molecules and oxygen molecules, the radio telescope is lo-
cated at the altitude of 4,000-5,000 meters summit of moun-
tains1. Also, since the RF with long wavelength is reflected
at ionization layer, a satellite measurement at outer space is
necessary. In 1997, the radio telescope satellite HALCA (Highly
Advanced Laboratory for Communications and Astronomy)
was on a mission [6]. Therefore, in the radio telescope, the
following location conditions are desirable:
Limited Space: Since the ratio telescope is located at the
summit of mountains or outer space, the super computer re-
quiring huge space is unacceptable. High-speed communica-
tion wires cannot set in a narrow space. Therefore, compact
hardware is desirable.
Low-Power Consumption: At the summit of mountains
or outer space, the power source is also limited. Thus,
low-power consumption is required. For example, NASA’s
MARVEL (Mars Volcanic Emission and Life) mission re-
quires a circuit that dissipates less than 10 W power [15].
Although the GPU outperforms the FPGA [10], it dissipates
much higher power than the FPGA.

1.4 Related Works
Cooley and Tukey proposed the Fast Fourier Trans-

form (FFT) based on the radix two [3]. Duhamel et al.
proposed the split-radix FFT [4]. Radix three, 22, four,
five, and eight FFTs were proposed in [14, 11, 5]. As for the
FFT implementation, He et al. proposed the radix 22 single
delay path feedback FFT [7]. Knight and Rabiner analyzed
error with respect to the fixed point FFT [13, 17]. Zhou et
al. analyzed the amount of hardware [23]. Andraka replaced
the twiddle factor memory with the pipelined CORDIC [1].
Kondo et al. implemented the equivalent SETI spectrometer
on the NVIDIA’s Tesla S1070 (four GPUs) [12].

1.5 Proposed Method
Because of restrictions for the space and the power con-

sumption, we adopt a single-FPGA board for the wideband
FFT. In the FFT, we need the twiddle factor memory and
the transform memory. First, to remove the twiddle factor
memory, we replace it with the pipelined CORDIC, since
the pipelined CORDIC requires no memory. Then, we ex-
tend the radix of the FFT from 22 to 2k in order to reduce
the number of transform memories. We realize the trans-
form memory by the DDR2SDRAM. In this way, we imple-
mented the wideband FFT. Contributions of this paper are
as follows:
We implement the 230-point FFT on an FPGA board,
and obtained its performance and the necessary amount
of hardware: As far as we know, this paper first reports the
implementation of the 230-point FFT on an FPGA board.
The conventional FFT library [2] can implement up to 216-
point FFTs.
We show that the FPGA based-one is faster and
dissipates lower power than the GPU based-one: As
for high productivity computing, GPUs outperform the FP-
GAs [10]. However, the radio telescope has a special re-

1Currently, ALMA (Atacama Large Millimeter/submeter
Array) project is going to build a new radio telescope at
the Andes Mountains.

quirements; not the productivity but the small space and
the low-power consumption.
The rest of the paper is organized as follows: Chapter 2

shows the bottleneck of the conventional FFT on an FPGA;
Chapter 3 replaces the twiddle factor memory with the pipelined
CORDIC; Chapter 4 extends the radix of the FFT from 22

to 2k; Chapter 5 shows the experimental results; and Chap-
ter 6 concludes the paper.

2. FAST FOURIER TRANSFORM (FFT)
First, we explain the N -point discrete Fourier transform,

then, we introduce theN -point fast Fourier transform. Next,
we analyze the amount of hardware for the radix 22 FFT.

2.1 N­Point Discrete Fourier Transform
Let x(n), (n = 0, 1, . . . , N − 1) be the input signal. The

N-point discrete Fourier transform (N-DFT) is

X(m) =

N−1∑
n=0

x(n)Wnm
N , (m = 0, 1, . . . , N − 1), (1)

where Wnm
N is a twiddle factor. It is defined as

Wnm
N = e−j 2π

N
nm = cos(

2π

N
nm) + j sin(

2π

N
nm), (2)

where j is an imaginary unit. In this paper, we assume that
the input signal x(n) is a complex number, and N is a power
of two.

2.2 N­Point Fast Fourier Transform
Since the direct implementation for Expr. (1) requires

O(N2) multipliers, it is impractical for large N . Cooley
and Tukey proposed the N-point fast Fourier trans-
form (N-FFT) that reduces the number of multipliers to
O(Nlog2N). In this paper, we adopt the decimation-in-
time N-FFT.
Here, we convert theN -DFT into theN -FFT. In Expr. (1),

suppose that N input signals are decomposed into odd in-
dices and even ones, then we have

X(m) =

N/2−1∑
n=0

x(2n)W 2nm
N +

N/2−1∑
n=0

x(2n+ 1)W
(2n+1)m
N .

Since W 2mn
N = e−j(2π/N)2mn = e−j(2π/(N/2))mn = Wmn

N/2, we
have

=

N/2−1∑
n=0

x(2n)Wnm
N/2 +Wm

N

N/2−1∑
n=0

x(2n+ 1)Wnm
N/2 (3)

= DFTeven(m) +Wm
N DFTodd(m),

where m = 0, 1, . . . , N
2
−1. Expr. (3) means that the N -DFT

is decomposed into two N
2
-DFTs. By applying Expr. (3) to

the N -DFT until decomposed into 1-DFTs, we have the N -
FFT. In this case, we apply Expr. (3) s = log2N times
recursively. We define s as the number of stages.
The butterfly operator shown in Fig. 3 performs a ba-

sic operation in N -FFT. The butterfly operator consists of
a complex adder (subtracter) (Fig. 4 (a)) and a complex
multiplier (Fig. 4 (b)). The butterfly operator shown in
Fig. 3 (a) uses two multipliers. By using symmetric prop-

ertyW
m+N/2
N = −Wm

N , we can share the multiplier as shown
in Fig. 3 (b).

Example 2.1. Fig.5 shows a dataflow for the 8-FFT. In
this case, the number of stages s is log28 = 3. Note that, we
use butterfly operators shown in Fig. 3 (b).

Each stage requires N
2
multipliers. Thus, the N -FFT con-

sisting of s stages requires O(Nlog2N) multipliers. N -DFT
requires O(N2) multipliers, so N -FFT reduces the number
of multipliers.
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2.3 Radix­2k Butterfly Unit
The butterfly operator can be realized by adders and mul-

tipliers on an FPGA. The twiddle factor is stored into the
twiddle factor memory. We assign the stage numbers as
1, 2, . . . , log2N from the input to the output. In the stage
1, the inputs for the butterfly operation are applied to the
adjacent points, then, the results are sent to the adjacent
points (Fig. 5 (a)). In the stage 2, the inputs for the butter-
fly operation are applied to the distance-two points, then,
the results are sent to distance-two points (Fig. 5 (b)). In
the stage 3, the inputs for the butterfly operation are ap-
plied to the distance-four points, then, the results are sent
to distance-four points (Fig. 5 (c)). Thus, the timing ad-
juster is necessary between adjacent stages. The radix-2k

butterfly unit for the N -FFT can be realized by the tim-
ing adjuster, the butterfly operator, and the twiddle factor
memory [7].

Example 2.2. Fig. 6 shows the radix-23 butterfly unit re-
alizing the 8-FFT shown in Fig. 5.

Here, we analyze the amount of hardware for the radix-2k

butterfly unit. Let s = ⌈log2N⌉ be the number of stages for
theN -FFT. The number of multipliers2 MulR2k isO(log2N),
since

MulR2k = 4s = 4⌈log2N⌉. (4)

Two adders are necessary for the complex multiplier, and
four adders are necessary for two complex adders. Thus,
the number of adders AddR2k is O(log2N), since

AddR2k = (4 + 2)s. (5)

For stage i, the number of necessary registers is 2i + 2(i −
1) − 1. Note that, the stage 1 use no register. Thus, the

2We implement the multiplication by the multiplier on the
FPGA. Thus, we assume that the number of multiplications
is equal to that of multipliers.
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number of registers RegR2k is O(N), since

RegR2k =

s∑
i=2

(2i + 2(i− 1)− 1). (6)

We assume that the selector consists of multiplexors with
two data inputs (2-MUXs). For stage i, a pair of selectors
consisting of 2i−1−1 copies of 2-MUXs are necessary. Thus,
the number of 2-MUXs is O(N), since

MuxR2k = 2×
s∑

i=2

(2i−1 − 1). (7)

The amount of the twiddle factor memory TwiddleMemR2k

is O(Nlog2N), since

TwiddleMemR2k = Ns. (8)

Therefore, for the radix-2k butterfly unit, registers, 2-MUXs,
and twiddle factor memories will be the bottleneck for the
implementation.

2.4 Radix­22 Butterfly Units with Transpose
For radix-2k butterfly units, since different stages handle

points with different distances, numbers of registers and 2-
MUXs increase. By applying the transpose operation
replacing indices between stages, we can adjust the points
of the inputs for the butterfly operator. As a result, num-
bers of registers and 2-MUXs are reduced. The transpose
memory performs the transpose operation.

Example 2.3. Fig. 7 shows an example of applying trans-
pose operation between stage 2 and stage 3 on the dataflow
shown in Fig. 5. In this case, since the inputs for the but-
terfly operators become adjacent points, no timing adjuster
is necessary.

Previous work showed that, for small N , the radix-22

butterfly units with transpose (R22FFT ) shown in
Fig. 8 becomes small. Since the R22FFT uses s = log2N
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butterfly operators, the number of multipliers MulR22FFT

is equal to Expr. (4), and the number of adders AddR22FFT

is equal to Expr. (5). Also, it uses s
2
radix-22 butterfly units.

Thus, the number of registers RegR22FFT is O(log2N), since

RegR22FFT = 5s. (9)

The number of 2-MUXs MuxR22FFT is O(log2N), since

MuxR22FFT = 2s. (10)

The amount of twiddle factor memory TwiddleMemR22FFT

is equal to Expr. (8). Thus, it increases with O(Nlog2N). In
the R22FFT , s

2
transpose memories with N bits are used.

Thus, the amount of transpose memory TranMemR22FFT

is O(Nlog2N), since

TranMemR22FFT = N
s

2
. (11)

For large N (> 220), both of twiddle factor and transpose
memories with O(Nlog2N) bits are too large to implement.
Therefore, we reduced these memories.

3. REPLACEMENT OF TWIDDLE FACTOR
MEMORY WITH PIPELINED CORDIC

From Expr. (8), for the R22FFT , the twiddle factor mem-
ory is too large for large N . Expr. (2) shows that the twiddle
factor is specified by the trigonometric functions (sin and
cos). Thus, the twiddle factor memory can be replaced with
the arithmetic circuit. Volder et al. proposed COordinate
Rotation DIgital Computer (CORDIC) algorithm [21]
that calculates the trigonometric function by a repetition
of addition and shift operations. The FFT circuit for the
CORDIC algorithm has been proposed [1]. The following
is the CORDIC algorithm to calculate sin(z) and cos(z) for
given radian z.

Algorithm 3.1. Let N be an integer (a large N corre-
sponds to a high precision), z be a given radian, x be the
horizontal variable, y be the vertical variable, sign and tmp
be temporary variables.

Step 1 r0 ←
√
2, θ[i] = arctan( 1

2i
), (i = 0, 1, . . . , log2N),

ri ← ri−1

cos(θ[i])
, (i = 1, 2, . . . , log2N).

Step 2 for i← 0 until i < log2N begin

Step 2.1 if (z > 0) then sign← −1 else sign← 1.
Step 2.2 z ← z + sign× θ[i].
Step 2.3 tmp← x.
Step 2.4 x← x+ z y

2i
.

Step 2.5 y ← y + z tmp
2i

.
Step 2.6 i← i+ 1.

end
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Figure 9: Pipelined CORDIC.

Step 3 sin(z)← y
ri
, cos(z)← x

ri
.

Step 4 Terminate.

To calculate sin(z) and cos(z), Algorithm 3.1 performs
the addition and the shift operations (Step 2.1-2.6) by us-
ing pre-computed values (Step 1). However, the direct im-
plementation of Algorithm 3.1 tends to be slow, since it
requires ⌈log2N⌉ repetitions of addition and shift opera-
tions (Step 2). The repetition can be converted to the
pipelined CORDIC shown in Fig. 9. Since the pipelined
CORDIC requires no memory, we can remove the twiddle
factor memory. Although the pipelined CORDIC requires
additional hardware to the original CORDIC, its through-
put is higher than the original one.
Let p = ⌈log2N⌉ be the number of pipeline stages. The

number of multipliers MulCOR is O(1), since

MulCOR = 2. (12)

The number of adders AddCOR is O(log2N), since

AddCOR = 6p. (13)

For each pipeline stage, registers retain the horizontal value
x, the vertical value y, and the rectangle z. Thus, the num-
ber of registers RegCOR is O(log2N), since

RegCOR = 3p. (14)

Suppose that the selector and the comparator consist of 2-
MUXs. The number of 2-MUXsMuxCOR isO(log2N), since

MuxCOR = 4p. (15)

Although the R22FFT uses log2N pipelined CORDICs, its
hardware is feasible.

4. REDUCTION OF TRANSPOSE MEMORY
BY RADIX­2K FFT

4.1 Radix­2k Butterfly Units with Transpose
Expr. (11) shows that, the R22FFT requires transpose

memories with O(Nlog2N) bits. As for the radio telescope,
the target number of points N is greater than 227. The
DDR2SDRAM (Double-Data-Rate2 Synchronous Dynamic
Random Access Memory)3 with more than 230 bits can re-
alize the transpose memory. However, for the FPGA, the
number of high-speed connectors for the DDR2SDRAM is
limited 4. For the radio telescope, since the high-speed ADC
and the PCI express use the high-speed connectors, the off-
chip DDR2SDRAM cannot use all the high-speed connec-
tors. Thus, the number of transpose memories becomes a
bottleneck.
3In the implementation, we used PC2-5300
DDR2SDRAM (dual channel), its bandwidth is 10.666 Giga
Bytes per second.
4For example, Altera’s Stratix IV GX530 has at most 12
high-speed connectors [2].
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To reduce the number of transpose memories, we use the
radix-2k butterfly units with transpose (R2kFFT)
shown in Fig. 10. In the R2kFFT, the transpose memory
is inserted per k stages, and the pipelined CORDIC cal-
culates the twiddle factor. Let s = ⌈log2N⌉ be the num-
ber of stages for N -FFT. The number of transpose mem-
ories for the R2kFFT is ⌈ s

k
⌉ − 1. Thus, the increase of k

decreases the number of transpose memories. We use the
off-chip DDR2SDRAM to realize transpose memories. The
DDR2SDRAM operates at high clock frequency for double
data rate, and reads and writes operations continuously by
using multi-bank access and posted CAS operations. Thus,
it performs high-speed transpose operations. In our imple-
mentation, we do not use the transpose memory at the out-
put of the circuit, since the host PC converts the order of the
index of the output. Also, at the input, the ADC board [9]
converts the order of the input by using the high-speed buffer
memory.

4.2 Analysis of Amount of Hardware
Consider anN -FFT with s = ⌈log2N⌉ stages. The R2kFFT

with transpose has q = s
k

radix-2k butterfly units. The
number of pipeline stages for the pipelined CORDIC is p =
⌈log2N⌉. From Exprs. (4) and (12), the number of multipli-
ers MulR2kFFT is O(log2N), since

MulR2kFFT = 4s+ 2p = 6log2N.

From Exprs. (5) and (13), the number of adders AddR2kFFT

is O((log2N)2), since

AddR2kFFT = 6s+ 6ps = 6log2N(1 + log2N).

From Exprs. (6) and (14), the number of registersRegR2kFFT

is O( 2
k

k
log2N), since

RegR2kFFT = q

k∑
i=2

(2i + 2i− 1) + 3ps. (16)

From Exprs. (7) and (15), the number of 2-MUXsMuxR2kFFT

used for the selector is O( 2
k

k
log2N), since

MuxR2kFFT = q
k∑

i=2

(2i − 1) + 4ps. (17)

From Expr. (11), the amount of transpose memory isO(Ns) =
O(Nlog2N). With large k, we assume that s becomes a con-
stant. Thus, TransMemR2kFFT is O(N). For the given
number of stages s, Exprs. (16) and (17) show that, an
increase of k increases numbers of registers and 2-MUXs.
Thus, we must find the suitable k that is feasible for given
hardware. In our implementation, k is obtained experimen-
tally.

5. EXPERIMENTAL RESULTS

5.1 Implementation Environment
We implemented the R2kFFT on the Altera’s DE4 de-

velopment and education board (FPGA: Altera’s Stratix

IV GX530, ALUTs 424,960, REGs: 424,960, M9ks: 1,280,
and 18×18 DSP blocks: 1,024). This board has two DDR2SO-
DIMMs, one PCI Express (×8), and two HSMCs (high-
speed connector) to connect the ADC. We used the Altera’s
Quartus II version 11.0 to synthesis, and the Altera’s Mega-
Core Function to generate the DDR2SDRAM controller and
the PCI Express controller.

5.2 Selection of Optimal k
Exprs. (16) and (17) show that, numbers of registers and

2-MUXs increase with O(q2k). The DE4 FPGA board has
two DDR2SO-DIMMs. We implemented the R2kFFT con-
sisting of three radix-2k butterfly units as shown in Fig. 10,
where k = ⌈ log2N

3
⌉.

5.3 Implementation of 230­FFT
We implemented the 230-FFT using 189,948 ALUTs and

120 DSPs. The maximum clock frequency was 380.2 MHz.
To run the DDR2SO-DIMM at 667 MHz, we set the system
clock frequency to 333 MHz by using the PLL. Since the im-
plemented FFT handles two points per one clock (333 MHz),
it handles per 1

333×220
second. Thus, the operation time to

handles 230 points was 2
30

333×220
× 1

2
= 1.537 second. We

used the ADC1x5000-8 (dual 2.5 Giga sample per second,
4bit). The implemented FFT extended to 36-bit fixed point
two’s complement complex numbers (18-bit real and 18-bit
imaginary). In the butterfly operation in each stage of the
FFT, the width grows by 1 bit by the adder and subtracter.
This may yield log2N + w bit outputs for w-bit data. To
avoid an overflow, the scaling schedule is used to divide the
values by a factor of 2⌈(4+N−w/k)⌉ in each R2k butterfly op-
erator. Although this increases the scaling error, the radio
astronomy requires the high-speed and wide band operation
rather than the precision. To reduce error in the FFT op-
erations, we used the rounding and saturation unit (RSU)
in each DSP block. The SETI spectrometer also uses 36-bit
fixed point two’s complement complex numbers in the FFT
part. To reduce hardware of the FFT part, the SETI spec-
trometer partitions the frequency band to r bands by using
FIR filters, and realizes smaller N

r
-FFTs [16]. On the other

hand, the implemented FFT directly performs the FFT op-
eration. Thus, the implemented FFT has a smaller error
margin than the SETI spectrometer.

5.4 Comparison with Altera’s FFT Library
We compared the implemented FFT with the Altera’s

MegaCore Function FFT library adopting theR22FFT with
respect to the amount of hardware (M9ks, ALUTs, and
DSPs) and the maximum frequency. Fig. 11 (a) compares
of the number of M9ks. Since the Altera’s FFT library con-
sumes 93.7% of available M9ks for N = 216, it cannot realize
the 2N -FFT with N > 16. On the other hand, the imple-
mented FFT consumes no M9k. Fig. 11 (b) compares of
the numbers of DSPs. Since the implemented FFT uses
the pipelined CORDIC, it consumes more DSPs than the
Altera’s FFT library. It consumes 6.8% of the available re-
sources for 216-FFT, and 9.4% for 230-FFT. Thus, it is fea-
sible. Fig. 11 (c) compares required numbers of ALUTs. Al-
though the implemented FFT consumes more ALUTs than
the Altera’s FFT library, it consumes only 8.2% for 216-FFT.
Also, it consumes 44.7% for 230-FFT. Thus, it fits on the
modern FPGA. Fig. 11 (d) compares of the maximum clock
frequencies. From 26-FFT to 214-FFT, both clock frequen-
cies are comparable. For 216-FFT, the Altera’s FFT library
is lower. Since the Altera’s FFT library consumes 93.7%
of available M9ks, the FPGA has no extra M9k space for
the place-and-route. The above results show that, the im-
plemented FFT can realize 214 times wider bandwidth than
the Altera’s FFT library on the same FPGA. Although the
implemented FFT requires additional ALUTs, DSPs, and
off-chip DDR2SDRAMs, they are acceptable.
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Figure 11: Comparison the proposed FFT with the Altera’s FFT.

Table 2: Comparison of GPUs with the proposed
method for 227-FFT.

Method Time [sec] Additional Hardware
1GPU 0.442
2GPU 0.295 Sharing PCI Express
4GPU 0.210 Sharing PCI Express
Proposed Method 0.157 two DDR2SDRAMs

5.5 Comparison with GPUs
With respect to the 227-FFT for the SETI spectrome-

ter, we compared the implemented FFT with one using the
NVIDIA Corp. Tesla S1070 GPU computing system (four
GPUs, total VRAM: 16 GB, Power: 800 W) [20]. Table 2
shows that, the implemented FFT is faster than the GPUs.
Since the power consumption for the FFT board used for our
implementation is less than 10 W, our FFT dissipates much
lower power than the GPUs. As for the space, the FPGA-
based implementation uses PCI slot, while the Tesla S1070
requires one rack unit. Thus, the FPGA implementation
is smaller than the GPU-based one. From above compari-
son, the FPGA-based one is suitable for the radio telescope.
Note that, for the precision, the GPU uses 32-bit floating
point, while the FPGA uses 36-bit fixed point. Since the
SETI spectrometer adopts 36-bit fixed point as same as our
system. From the error analysis, the twice bit length (18 bits
in our implementation) of the input (8 bits in our implemen-
tation) is enough for the precision in the FFT [5, 17].

6. CONCLUSION
This paper showed the R2kFFT for a wideband FFT.

We analyzed the amount of hardware for the conventional
R22FFT , and showed that the amount of memory is the
bottleneck. To reduce the memory, we replaced the twiddle
factor memory with the pipelined CORDIC. Also, we ex-
tended the radix of the FFT from 22 to 2k in order to reduce
the transpose memory. We implemented the 230-FFT on
the Altera’s DE4 development and education board. It per-
forms the 230-FFT in 1.5 seconds. Compared with the Al-
tera’s FFT library, our FFT circuit realizes 214 times wider
bandwidth using the same FPGA. Also, compared with the
Tesla S1070 utilizing four GPUs, our FFT circuit is faster
and dissipates lower power. In this way, we implemented
the wideband FFT for the radio telescope.
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