
A Deep Convolutional Neural Network Based on
Nested Residue Number System

Hiroki Nakahara
Ehime University, Japan

Tsutomu Sasao
Meiji University, Japan

Abstract—A pre-trained deep convolutional neural net-
work (DCNN) is the feed-forward computation perspective which
is widely used for the embedded vision systems. In the DCNN,
the 2D convolutional operation occupies more than 90% of the
computation time. Since the 2D convolutional operation performs
massive multiply-accumulation (MAC) operations, conventional
realizations could not implement a fully parallel DCNN. The RNS
decomposes an integer into a tuple of 𝐿 integers by residues of
moduli set. Since no pair of modulus have a common factor
with any other, the conventional RNS decomposes the MAC unit
into circuits with different sizes. It means that the RNS could
not utilize resources of an FPGA with uniform size. In this
paper, we propose the nested RNS (NRNS), which recursively
decompose the RNS. It can decompose the MAC unit into circuits
with small sizes. In the DCNN using the NRNS, a 48-bit MAC
unit is decomposed into 4-bit ones realized by look-up tables
of the FPGA. In the system, we also use binary to NRNS
converters and NRNS to binary converters. The binary to NRNS
converter is realized by on-chip BRAMs, while the NRNS to
binary one is realized by DSP blocks and BRAMs. Thus, a
balanced usage of FPGA resources leads to a high clock frequency
with less hardware. The ImageNet DCNN using the NRNS is
implemented on a Xilinx Virtex VC707 evaluation board. As for
the performance per area GOPS (Giga operations per second) per
a slice, the proposed one is 5.86 times better than the existing
best realization.

I. INTRODUCTION

A. Deep Convolutional Neural Network (DCNN)

A deep neural network (DNN) consists of multi-layer
neuron model. A deep convolutional neural network (DCNN)
is a combination of the 2D convolutional layers and the DNN.
Since the DCNN emulates the human vision, it has a high
accuracy for an image recognition. The DCNN is widely used
for embedded vision systems including a hand-written recog-
nition [14], a face detector [19], a scene determination [18],
and an object recognition [11].

In the embedded vision system, since the learning is done
by off-line, we can only consider the execution of pre-trained
DCNN for the run-time environment. With the increase of
the number of layers, the DCNN can increase recognition
accuracy. Thus, a large scale DCNN is desired. Since the
existing system using a CPU is too slow, the acceleration
of the DCNN is necessary for the real-time requirement of
the embedded vision systems [14]. Most of the software-
based DCNNs use the GPUs [3], [8], [23], [24]. Unfortunately,
since the GPU consumes high power, they are unsuitable for
the embedded system [9]. Thus, the FPGA-based DCNN is
required for low-power and real-time embedded vision system.
As for the recognition accuracy, the DCNN using a fixed point

representation is almost the same as one using a floating point
representation [11]. The FPGA can use an appropriate low
precision representation which reduces the hardware resources
and increases the clock frequency, while the GPU cannot do
it. Another merit of the FPGA is a lower power consumption
than the GPU. A previous work [9] showed that, as for the
performance per power, the FPGA-based DCNN is about 10
times more efficient than the GPU-based one. Recently, the
Microsoft implemented a high performance per power DCNN
by using the FPGA cluster (Catapult) [6].

In the DCNN, the 2D convolution occupies more than 90%
of computation time [7]. Thus, in this paper, we consider the
acceleration of the 2D convolution, which can be realized by
massive MAC (multiply-accumulation) operations. Although
the modern FPGA has DSP blocks (DSP48E for the Xilinx
FPGA) for the MAC operations, a large scale DCNN requires
𝑂(𝑛 ⋅ 22𝑛) DSP48Es, where 𝑛 is the precision of the fixed
point representation. Thus, a DCNN with a high performance
per area is desired.

B. Related Work

The learning and predict by an artificial neural network was
implemented on the FPGA [15]. The basic 2D convolutional
circuits were reported in [10], [19]. The efficient utilization of
both on-chip and off-chip memories was discussed in [12]. The
general classifier including the DCNN was considered in [2].
Various optimization techniques for the DCNN on the FPGA
were proposed: Reduction of multipliers by dynamic reconfig-
uration [4]; optimization of the memory bandwidth [18], and
selection of optimal parameters for the high-level synthesis
design [26].

C. Proposed Method

In this paper, we propose an area-performance efficient
DCNN by reducing MAC units. First, we use a residue number
system (RNS) [21], [25] to decompose 𝑛-input MAC units into
smaller ones. Then, we realize the small MAC units by LUTs
on an FPGA. The RNS decomposes an integer into a tuple
of 𝐿 integers by residues of moduli set. In the conventional
RNS, since no pair of modulus have a common factor with any
other, the resulting MAC unit have different sizes. This means
that even if we used the RNS, we cannot utilize the FPGA
resources of uniform size. In this paper, we propose the nested
RNS (NRNS), which recursively decompose the numbers in
RNS. By using the NRNS, we can decompose the MAC unit
into smaller ones with uniform sizes. In the DCNN, since the
NRNS decomposes the 48-bit fixed point MAC units into 4-
bit ones, they can be implemented by 8-input 4-output LUTs.





implementation [4]. In this case, the 2D convolution works
with 48 + 48 + ⌈𝑙𝑜𝑔2121⌉ = 103 bits representation. After
convolution, the output is rounded to 48 bits. Since it requires
excessive MAC units (DSP48Es), implementation of a fully
parallel 2D convolutional circuit is hard. In this paper, we
decompose the 𝑛-input MAC unit by the nested residue number
system (NRNS).

III. RESIDUE NUMBER SYSTEM (RNS)

A. Definition

A residue number system (RNS) [21], [25], is defined by
a set of 𝐿 integer constants ⟨𝑚1,𝑚2, . . . ,𝑚𝐿⟩, where no pair
of modulus have a common factor with any other. An arbitrary
integer 𝑍 can be uniquely represented by the RNS as a tuple
of 𝐿 integers (𝑍1, 𝑍2, . . . , 𝑍𝐿), where 𝑍𝑖 ≡ 𝑍 (𝑚𝑜𝑑 𝑚𝑖).

𝑀 =
∏𝐿

𝑖=1 𝑚𝑖 is a dynamic range of the RNS. In the
RNS, the addition, the subtraction, and the multiplication can
be performed in digit-wise. Let 𝑋 and 𝑌 be integers, 𝑥𝑖 and
𝑦𝑖 be integers in the RNS defined by 𝑚𝑖 (1 ≤ 𝑖 ≤ 𝐿), ∘
includes + (addition), − (subtraction), and ∗ (multiplication).
Then 𝑍 = 𝑋 ∘𝑌 satisfies 𝑍 = (𝑍1, 𝑍2, . . . , 𝑍𝐿), where 𝑍𝑖 =
(𝑋𝑖 ∘ 𝑌𝑖) 𝑚𝑜𝑑 𝑚𝑖. Note that, the division is not included in
the operations.

Example 3.1: Let ⟨𝑚1,𝑚2,𝑚3⟩ = ⟨3, 4, 5⟩ be the moduli
set. Consider the multiplication 𝑋 × 𝑌 , where 𝑋 = 8 and
𝑌 = 2. Since 𝑋×𝑌 = 16, it is represented by (1, 0, 1) in the
RNS. 𝑋 and 𝑌 is represented by (2, 0, 3) and (2, 2, 2) in the
RNS, respectively. Thus, 𝑋 × 𝑌 in the RNS is computed as
follows:

𝑋 × 𝑌 = (4 𝑚𝑜𝑑 3, 0 𝑚𝑜𝑑 4, 6 𝑚𝑜𝑑 5)

= (1, 0, 1).

In the RNS, the arithmetic operation is performed in digit-
wise. This means that a large multiplier can be decomposed
into smaller ones. In this paper, we realize them by LUTs
on an FPGA. The multiplier on the RNS requires additional
resources: A binary to RNS (Bin2RNS) converter and an RNS
to binary (RNS2Bin) one. The modern FPGA has BRAMs and
DSP48Es in addition to Slices. The usage of both BRAMs and
DSP48Es for the converters hides the area overhead. In this
paper, we implement the Bin2RNS converter by a cascade of
BRAMs, while the RNS2Bin converter by the DSP48Es and
BRAMs [1].

B. Realization of Bin2RNS Converter

Let 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), where 𝑥𝑖 = {0, 1}. Consider the
RNS ⟨𝑚1,𝑚2, . . . ,𝑚𝐿⟩ for 𝑋 . The single ROM realization
of the Bin2RNS converter requires 2𝑛

∑𝐿
𝑖=1⌈𝑙𝑜𝑔2𝑚𝑖⌉ bits,

which is too large to realize for a large 𝑛. By applying
functional decompositions [5], we can reduce the total amount
of memory.

Consider a function 𝐹 (𝑋) : 𝐵𝑛 → {0, 1, . . .𝑚−1}, where
𝐵 = {0, 1} and 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛). Let (𝑋𝐿, 𝑋𝐻) be a
partition of 𝑋 into two parts. A decomposition chart of 𝐹
is the two-dimensional matrix, where each column label has
distinct assignment of elements in 𝑋𝐿, and each row label has

F(X)x

Hx1

G
x2

⎡ ⎤μ2log=r

Fig. 5. Functional decompo-
sition.

LUT cascade for X mod m1

LUT cascade for X mod m2

BRAM

BRAM

BRAM

⎡ ⎤Lmr 2log=x n

pipeline
registers

LUT cascade for X mod mL

k

k r

k r

Fig. 6. Bin2RNS converter by
parallel LUT cascades.

10210210r
1021021011
0210210201
2102102110
1021021000
10101010
11001100
11110000

10210210r
1021021011
0210210201
2102102110
1021021000
10101010
11001100
11110000 x0

x1
x2x3x4

Fig. 7. Example of decomposition
chart (𝑋 mod 3).

1111
0011
2101
1001
0110
2010
1100
0000
rx2x1x0

1111
0011
2101
1001
0110
2010
1100
0000
rx2x1x0

000

0
110
201
011

211
101
010
200

2

111
001
210
100

1

fx4x3r
000

0
110
201
011

211
101
010
200

2

111
001
210
100

1

fx4x3r

2 2

Fig. 8. An LUT cascade for 𝑋
mod 3.

distinct assignment of elements in 𝑋𝐻 , and the corresponding
matrix value is 𝐹 (𝑋𝐿, 𝑋𝐻). The number of different column
patterns in the decomposition chart is the column multiplicity
𝜇. 𝑋𝐿 denotes the bound variables, and 𝑋𝐻 denotes the free
variables. Fig. 5 shows the functional decomposition. Connec-
tions with adjacent LUTs are called rails, where 𝑟 = ⌈𝑙𝑜𝑔2𝜇⌉.
Let ∣𝑋𝐿∣ = 𝑛1 and ∣𝑋𝐻 ∣ = 𝑛2. In this case, the total amount of
memory for the functional decomposition is 2𝑛1 ×𝑟1+2𝑟1+𝑛2

bits. By applying the functional decomposition recursively,
we have an LUT cascade [20]. Fig. 6 shows the Bin2RNS
converter implemented by parallel LUT cascades. From the
property of modulo operations, the column multiplicity for
each modulo 𝑚𝑖 is at most 𝑚𝑖. Let 𝑠 be the number of 18Kb
BRAMs with 𝑘 inputs. As for the LUT cascade for modulo
𝑚𝑖, from Fig. 6, we have the following equation [20]:

𝑘 + (𝑠− 1)(𝑘 − 𝑟) ≥ 𝑛,

where 𝑟 = ⌈𝑙𝑜𝑔2𝑚𝑖⌉ and 𝑘 > ⌈𝑙𝑜𝑔2𝑚𝑖⌉. Then, we have

𝑠 =

⌈
𝑛− ⌈𝑙𝑜𝑔2𝑚𝑖⌉
𝑘 − ⌈𝑙𝑜𝑔2𝑚𝑖⌉

⌉
.

Example 3.2: Assume that 𝑋 = (𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4),
𝑋𝐿 = (𝑥0, 𝑥1, 𝑥2) and 𝑋𝐻 = (𝑥3, 𝑥4). Fig. 7 shows
the decomposition chart for 𝑋 𝑚𝑜𝑑 3, and Fig. 8 shows
its LUT cascade. Fig. 7 shows that the column multiplicity
𝜇 is 3, and the number of rails 𝑟 is ⌈𝑙𝑜𝑔23⌉ = 2. The
single ROM realization for the Bin2RNS converter requires
25 × 2 = 64 bits, while the LUT cascade realization requires
23 × 2 + 22+2 × 2 = 48 bits.

C. Realization of RNS2Bin Converter

To realize the RNS2Bin converter, we use a formula
𝑋𝑖 = 𝑥𝑖∣𝑀−1

𝑖 ∣𝑚𝑖
⋅ 𝑀𝑖, where 𝑀𝑖 = 𝑀/𝑚𝑖, 𝑀−1

𝑖 ⋅ 𝑀𝑖 =










