
A PACKET CLASSIFIER USING LUT CASCADES BASED ON EVMDDS (K)

1Hiroki Nakahara 2Tsutomu Sasao 3Munehiro Matsuura

1Kagoshima University, Japan 2Meiji University, Japan 3Kyushu Institute of Technology, Japan

ABSTRACT

This paper presents a packet classifier using multiple LUT
cascades based on edge-valued multi-valued decision dia-
grams (EVMDDs (k)). First, a set of rules for a packet clas-
sifier is partitioned into groups. Second, they are decom-
posed into field functions and Cartesian product functions.
Third, they are represented by EVMDDs (k), and finally,
they are converted to LUT cascades using adders. We im-
plemented the proposed circuit on a Virtex 7 VC707 evalua-
tion board. The system throughput is 345.60 Gbps for mini-
mum packet size (40 Bytes). As for the normalized through-
put (efficiency), the proposed one is 7.14 times better than
existing FPGA implementations.

1. INTRODUCTION

1.1. Demands of Packet Classifier

A packet classification [20] is a key technology in routers
and firewalls. A packet header includes a protocol num-
ber, a source address, a destination address, and a port num-
ber. The packet classifier performs a predefined action for
a corresponding rule. Applications of the packet classifier
include a firewall (FW), an access control list (ACL), and an
IP chain for an IP masquerading technique.

With the rapid increase of traffic, core routers dissipate
the major part the total network power [22]. Thus, we cannot
use ternary content addressable memories (TCAMs), since
they dissipate too much power. In addition, a reconfigurable
architecture is necessary to update policy rules of the packet
classifier. With the rapid growth of the Internet, packet clas-
sifiers have become the bottleneck in the network traffic man-
agement. Recently, a core router works at a 100 Gbps link
speed for a minimum packet size (40 bytes). Thus, a paral-
lel processing is an effective method to increase the system
throughput. In this case, the throughput per area-efficiency
is an important measure [12]. A modern FPGA consists of
lookup-tables (Slices), on-chip memories (BRAMs), arith-
metic circuits (DSP48Es), and so on. A balanced usage of
hardware resources in FPGAs is the key to realize a high
throughput per area. This paper considers a memory-based
architecture on the FPGA, which dissipate lower power than
TCAMs.

1.2. Contributions of the Paper

This paper proposes an architecture using multiple look-up-
table (LUT) cascades based on edge-valued multi-valued de-
cision diagrams (EVMDDs (k)). Our contributions are as
follows:

1 We proposed a compact and high-speed packet clas-
sifier by LUT cascades based on EVMDDs (k). Con-
ventional methods use only Slices and BRAMs, while
the proposed architecture uses DSP48E blocks in ad-
dition to Slices and BRAMs. Thus, the proposed ar-
chitecture uses available FPGA resources effectively.

2 We implemented packet classifier using multiple LUT
cascades on an FPGA. Its system throughput is more
than 300 Gbps. As for the efficiency measure (through-
put per normalized memory size), the proposed archi-
tecture is higher than existing methods.

The rest of the paper is organized as follows: Chapter 2
introduces a packet classifier; Chapter 3 shows the LUT cas-
cade based on an MTMDD (k); Chapter 4 shows the LUT
cascade based on an EVMDD (k); Chapter 5 shows experi-
mental results; and Chapter 6 concludes the paper.

2. PACKET CLASSIFIER

2.1. 5-tuple Packet Classification

A packet classification table consists of a set of rules. Each
rule has five input fields: Source address (SA), destination
address (DA), source port (SP), destination port (DP), and
protocol number (PRT). Also, it generates a rule number (Rule).
A field has entries. In this paper, since we consider a real-
ization of the packet classifier for the Internet protocol ver-
sion 4 (IPv4), we assume that SA and DA have 32 bits, DP
and SP have 16 bits, and PRT has 8 bits. An entry for SA
or DA is specified by an IP address; that for SP or DP is
specified by an interval [x,y], where x and y denote a port
number; and that for PRT is specified by a protocol num-
ber. SA and DA are detected by a longest prefix match; SP
and DP are detected by a range match; and PRT is detected
by an exact match. A packet classifier detects matched
rules using the packet classification table. In this paper, we
assume that the rule with the largest number has the high-
est priority. Note that, any packet matches a default rule
whose rule number is zero. Obviously, the default rule has
the lowest priority. When two or more rules are matched, a
rule having the highest priority is selected.

Example 2.1 Table 1 shows an example of the packet clas-
sification table, where an asterisk ‘*’ in an entry matches
both 0 and 1, while a dash ‘-’ in a field matches any pattern.
In Table 1, each field has four bits, rather than the actual
number of bits to simplify the example.

Consider the packet classification table shown in Ta-
ble 1. The packet header with SA = 0000, DA = 1010,
SP = 8, DP = 8, and PRT = TCP matches rule 3,

978-1-4799-0004-6/13/$31.00 ©2013 IEEE

Table 1. An example of a packet classification table.
in out

SA DA SP DP PRT Rule
1000 110* [1,8] [8,9] ICMP 4
00** 1*** [2,9] [6,8] TCP 3
010* 0010 [8,15] [7,14] UDP 2
0*** 10** [8,9] [4,11] TCP 1
**** **** [0,15] [0,15] - 0 (default)

Memory

XSA (32 bit)

XDA (32 bit)

XSP (16 bit)

XDP (16 bit)

XPRT (8 bit)

MemoryMemoryMemory

 )1(log21 += pm

 )12(log23 += pm

m5=8

 )1(log22 += pm

 )12(log24 += pm

 )1(log2 +p

Field Func!on

MemoryMemoryMemory

MemoryMemoryMemory

MemoryMemoryMemory

MemoryMemoryMemory

Cartesian Product

Func!on

Fig. 1. Decomposition of packet classification table by
Cartesian product method.

rule 1, and the default rule. Since the rule 3 has the highest
priority, the rule 3 is selected.

2.2. Decomposition of Packet Classification Table by Carte-
sian Product Method

Let p be the number of rules. Since |XSA| = |XDA| = 32,
|XSP | = |XDP | = 16, and |XPRT | = 8, the direct memory
realization requires 2104dlog2(p+1)e bits, which is too large
to implement. We use Cartesian product method [19] which
decomposes the packet classification table into field func-
tions and a Cartesian product function 1.

An entry of a rule can be represented by an interval

[9:15]

[8:8]

[6:7]

[4:5]

[0:3]

4

3

2

1

0

15

14

13

12

11

10

00001

9

100118

7
00011

6

5
00111

4

3

2

1
01011

0

[9:15]

[8:8]

[6:7]

[4:5]

[0:3]

4

3

2

1

0

15

14

13

12

11

10

00001

9

100118

7
00011

6

5
00111

4

3

2

1
01011

0

R
u

le
 4

R
u

le
 2

R
u

le
 1

R
u

le
 3

D
e

fa
u

lt

SA Interval
Vectorized

Interval

Func!on

Filed

Func!on
Segment

[15:15]

[12:14]

[10:11]

[9:9]

[8:8]

[7:7]

[6:6]

[4:5]

[0:3]

8

7

6

5

4

3

2

1

0

0000115

14

13 00101

12

11
00111

10

101119

111118

011117

010116

5
00011

4

3

2

1
00001

0

[15:15]

[12:14]

[10:11]

[9:9]

[8:8]

[7:7]

[6:6]

[4:5]

[0:3]

8

7

6

5

4

3

2

1

0

0000115

14

13 00101

12

11
00111

10

101119

111118

011117

010116

5
00011

4

3

2

1
00001

0

DP Interval
Vectorized

Interval

Func!on

R
u

le
 4

R
u

le
 3

R
u

le
 2

R
u

le
 1

D
e

fa
u

lt

Filed

Func!on
Segment

Fig. 2. Examples of segment.

1In [19], Cartesian product was called “cross product”.

SA IDXSA

[0:3] 0

[4:5] 1

[6:7] 2

[8:8] 3

[9:15] 4

SA IDXSA

[0:3] 0

[4:5] 1

[6:7] 2

[8:8] 3

[9:15] 4 4[12:13]

DA IDXDA

[0:1] 0

[2:2] 1

[3:7] 2

[8:11] 3

[14:15] 5

4[12:13]

DA IDXDA

[0:1] 0

[2:2] 1

[3:7] 2

[8:11] 3

[14:15] 5

3

4

4

IDXDA

2

0

0

IDXSPIDXSA IDXDP IDXPRT Rule

3 4 0 4

3 5 0 4

0 2 1 33

4

4

IDXDA

2

0

0

IDXSPIDXSA IDXDP IDXPRT Rule

3 4 0 4

3 5 0 4

0 2 1 3

4[9:9]

SP IDXSP

[0:0] 0

[1:1] 1

[2:7] 2

[8:8] 3

[10:15] 5

4[9:9]

SP IDXSP

[0:0] 0

[1:1] 1

[2:7] 2

[8:8] 3

[10:15] 5 5[9:9]

6[10:11]

7[12:14]

4[8:8]

DP IDXDP

[0:3] 0

[4:5] 1

[6:6] 2

[7:7] 3

[15:15] 8

5[9:9]

6[10:11]

7[12:14]

4[8:8]

DP IDXDP

[0:3] 0

[4:5] 1

[6:6] 2

[7:7] 3

[15:15] 8

PRT IDXPRT

[0:0] 0

[1:1] 1

[2:2] 2

[1:1] 1

PRT IDXPRT

[0:0] 0

[1:1] 1

[2:2] 2

[1:1] 1

Field Func!ons

Cartesian Product Func!on

Fig. 3. An example of Cartesian product method.

function [16]:

IN(X : A,B) =
{

1 (A ≤ X ≤ B)
0 (otherwise) (1)

where X , A, and B are integers. Let xi ∈ {0, 1}, yi = ∗,
~v = (x1, x2, . . . , xn, y1, y2, . . . , ym), and A =

∑n
i=1 xi2i−1.

Any entry for SA is represented by IN(XSA : A2m,(A +
1)2m − 1). Similarly, any entry for DA can be represented
by an interval function. Any entry for PRT is represented by
IN(XPRT : b, b), where b is a protocol number.

As shown in Example 2.1, multiple rules may match in
a packet classification table. In such a case, we use a vec-
torized interval function. Let r be the number of rules.
A vectorized interval function is ~H(X) =

∨r
i=1 ~eiIN(X :

Ai, Bi), where ~ei is a unit vector with r elements, and only
i-th bit is one and other bits are zeros.

For each value of ~H(X), we assign a segment, which
is an interval or a set of intervals. Then, we define a field
function F (X), which generates an unique integer index Ii

corresponding to the i-th segment [Ci, Di] satisfying Ci ≤
X ≤ Di. Note that, to distinguish from an interval, we
denote a segment consisting of an interval [C,D] as [C : D].
Next, we define Cartesian product function G : Y → Z,
where Y = I1×I2×· · ·×Ik is a set of Cartesian products of
indices generated by field functions. As shown in Fig. 1, the
packet classification table is decomposed into field functions
and a Cartesian product function.

We can assign an arbitrary index to a segment. In this pa-
per, we assign indices to make an M1-monotone increasing
function [8] to reduce the amount of memory. Let I be a set
of integers including 0. An integer function f (X) : I → Z
such that 0 ≤ f (X + 1)− f (X) ≤ 1 and f (0) = 0 is an
M1-monotone increasing function on I .

Example 2.2 Fig. 2 shows examples of segments for SA and
DP shown in Table 1. Note that, rules are represented by
intervals.

3. LUT CASCADE BASED ON MTMDD (K)

3.1. Cascade Realization of an M1-monotone Increasing
Function

A binary decision diagram (BDD) [1] is obtained by ap-
plying Shannon expansions repeatedly to a logic function

SA x3x2x1x0 IDXSA

0 0000 0

1 0001 1

2 0010 2

3 0011 2

4 0100 2

5 0101 2

6 0110 2

7 0111 2

8 1000 3

9 1001 4

10 1010 5

11 1011 5

12 1100 5

13 1101 5

14 1110 5

15 1111 5

SA x3x2x1x0 IDXSA

0 0000 0

1 0001 1

2 0010 2

3 0011 2

4 0100 2

5 0101 2

6 0110 2

7 0111 2

8 1000 3

9 1001 4

10 1010 5

11 1011 5

12 1100 5

13 1101 5

14 1110 5

15 1111 5

M1-monotone

Increasing Func!on

0 1 2

0

0

0 1

1

1

0 1

0 1 2

00
01

X1

{x3,x2}

X0

{x1,x0}

3 4 5

X0

{x1,x0}

10

11

00

01
10

11

00
01 10

11

MTBDD (MTMDD(1)) MTMDD(2)

4=µ

x1

x2

x3

3 4

0

0

0 1

1

1

x1

x2

x0 x0

4=µ

x3 x2 r

0 0 0

0 1 1

1 0 2

1 1 3

x3 x2 r

0 0 0

0 1 1

1 0 2

1 1 3

r x1 x0 f

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 2

1 0 0 2

1 0 1 2

1 1 0 2

1 1 1 2

2 0 0 3

2 0 1 4

2 1 0 5

2 1 1 5

3 0 0 5

3 0 1 5

3 1 0 5

3 1 1 5

r x1 x0 f

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 2

1 0 0 2

1 0 1 2

1 1 0 2

1 1 1 2

2 0 0 3

2 0 1 4

2 1 0 5

2 1 1 5

3 0 0 5

3 0 1 5

3 1 0 5

3 1 1 5

LUT (Memory)

Rails

LUT cascade

5

Fig. 4. An LUT cascade based on an MTMDD (k).

Terminal Node

Non-terminal Node

Fig. 5. Conversion of
an MTBDD node into an
EVBDD node.

f . Each non-terminal node labeled with a variable xi has
two outgoing edges which indicate nodes representing co-
factors of f with respect to xi. A multi-terminal BDD
(MTBDD) [2] is an extension of a BDD and represents an
integer-valued function. In the MTBDD, the terminal nodes
are labeled by integers.

Let X = (X1, X2, . . . , Xu) be a partition of the input
variables, and |Xi| be the number of inputs in Xi. Xi is
called a super variable. When the Shannon expansions
are performed with respect to super variables |Xi|, where
|Xi| = k, all the non-terminal nodes have 2k edges. In this
case, we have a multi-valued multi-terminal decision dia-
gram (MTMDD(k)) [4]. Note that, an MTMDD(1) means
an MTBDD. The width of the MDD (k) at the height k
is the number of edges crossing the section of the MDD (k)
between super variables Xi+1 and Xi, where the edges in-
cident to the same node are counted as one.

Let p be the number of rules, and |X| = n. An M1-
monotone increasing function can be realized by an LUT
cascade [17] shown in Fig. 6. Connections between LUTi

and LUTi−1 requires ri = dlog2µie rails. Since a mod-
ern FPGA has BRAMs and distributed RAMs (realized by
Slices), LUT cascades are easy to implement. The amount
of memory for LUTi based on an MTMDD (k) is ri·2(k+ri+1).
Thus, the total amount of memory for an LUT cascade is M
=

∑u
i=0 ri ·2(k+ri+1). The number of unique indices for the

M1-monotone increasing function is equal to the number of
segments. A reduction of ri reduces the amount of memory
for an LUT cascade. Thus, to reduce the amount of memory
for the LUT cascade, we partition rules into subrules which
increases the least number of segments.

Example 3.3 Fig. 4 converts the field function for SP shown
in Fig. 3 into the LUT cascade. First, the given function is
converted to the MTBDD. Then, it is converted to the MT-
MDD (k). Next, by realizing each index on the MTMDD (k)
of the LUT, we have the LUT cascade. In this example, the
amount of memory for the LUT cascade is 22×2+24×3 =
54 bits.

As for an M1-monotone increasing function, the upper
bound on the number of rails in the LUT cascade has been
analyzed.

Memory

Memory

Memory

0 1 p

Xu

Xu-1

X1

Xu

Xu-1

X1

 uµ2log

 12log −uµ

 22log µ

 )1(log2 +p

rails

rails

rails

rails
terminals

uµ

1−uµ

2µ

Fig. 6. Conversion of an LUT cascade from an MT-
MDD (k).

 )1(log2 +p

X
1

X
2

X
3

X
4

X
5

LUT CascadeLUT CascadeLUT Cascade

LUT CascadeLUT CascadeLUT Cascade

LUT CascadeLUT CascadeLUT Cascade

LUT CascadeLUT CascadeLUT Cascade

m
1

Field Func!ons

m
2

m
3

m
4

m
5

Cartesian Product Func!ons

LUT

Cascade

Fig. 7. Packet Classifier by LUT cascades based on an MT-
MDD (k).

Theorem 3.1 2 [15] Let p be the number of unique indices
for the M1-monotone increasing function. The upper bound
on the number of rails in the LUT cascade is r = dlog2(p +
1)e.

3.2. Partition of Rules by Greedy Algorithm

Since a field function produces at most 2p+1 segments, it is
compactly realized by an LUT cascade [10]. However, the

2In [15], the M1-monotone increasing function is called segment index
encoder function.

Cartesian product function produces O(p5) segments [19].
Thus, a direct realization by an LUT cascade is hard. To
reduce the number of segments, we partition rules into sub-
rules. Then, we realize subrules by circuits shown in Fig. 7.
Since two or more rules may match at the same time, we
attached the maximum selector to the output.

Let [x, y] be an entry for a field. Then, y−x is the size of
the interval. We propose the greedy algorithm to partition
rules as follows:

Algorithm 3.1 (Partition of rules) Let R = {r1, r2, . . . , rp}
be the set of rules, p be the number of rules, G = {G1, G2, . . . ,
Gq} be the partition of rules, and q be the number of groups
of rules.

1. Compute the sum of sizes of intervals d for each rule.
Then, sort the rules in decreasing order as
R′ = (r′1, r

′
2, . . . , r

′
p).

2. q ← 1, i← 1.
3. Gq ← r′i.
4. Do Steps 4.1 to 4.4 until i > p.

4.1. For 1 ≤ j ≤ q, decompose Gj ∪ r′i by Cartesian
product method, then generate LUT cascades.
And, obtain the amount of memory Mgrp for the
LUT cascades.

4.2. Decompose r′i by Cartesian product method, then
generate LUT cascades. And, obtain the amount
of memory Msingle for the LUT cascades.

4.3. If Mgrp < Msingle, then Gj ← Gj ∪ r′i. Other-
wise, Gq+1 ← r′i, and q ← q + 1.

4.4. i← i + 1.

5. Terminate.

Algorithm 3.1 partitions the packet classification table
efficiently using its property. Real-life packet classification
tables in an inherent data structure are analyzed in [7]. Since
many packet classification tables are maintained by humans,
global controls (wide range port) are used in the global net-
works, while detail controls (narrow range port) are used
in the local networks. Thus, in practice, the number of rails
seldom becomes the worst. A simple partition algorithm can
suppress the increase of segments. As a result, we can re-
duce the memory size.

4. LUT CASCADE BASED ON AN EVMDD (K)

To reduce the amount of memory for an LUT cascade, we
introduce an LUT cascade based on an edge-valued multi-
valued decision diagram (EVMDD (k)) [6], which is an
extension of an EVBDD. An EVBDD consists of one ter-
minal node representing zero and non-terminal nodes with
a weighted 1-edge, where the weight has an integer value
α. An EVBDD is obtained by recursively applying the con-
version shown in Fig. 5 to each non-terminal node in an
MTBDD. Note that, in the EVBDD, 0-edges have zero weights.

In an Mα-monotone increasing function, subfunction f ′

is obtained by adding α to subfunction f . Thus, an EVBDD
may have smaller widths by sharing f and f ′ with α edge (Fig. 8
(a)). The MTBDD only shares prefixes, while the EVBDD
shares both prefixes and postfixes (Fig. 8 (b)). By rewriting

f f+ f

0 1 0 1

(a) (b)

α

α

Fig. 8. Principle of reduction of width in an EVBDD.

000 111 444 222

x0x0x0

x1x1x1

x2x2x2

0

0

0 1

1

1

333 444 333 555

x1x1x1

x2x2x2

0

0

0 1

1

1

x3x3x3
0 1

x0x0x0

000 111 222 333

x0x0x0

x1x1x1

x2x2x2

0

0 1

1

1

444 555 666 777

x1x1x1

x2x2x2

0

0

0 1

1

1

x3x3x3
0 1

x0x0x0

f' f

0 0

1 1

2 4

3 2

4 3

5 3

6 2

7 5

f' f

0 0

1 1

2 4

3 2

4 3

5 3

6 2

7 5

Transla on

Memory

Fig. 9. An example of rewrite to M1-monotone increasing
function.

the terminals of the MTBDD for the Cartesian product func-
tion, we have the M1-monotone increasing function. Fig. 9
shows an example to obtain an M1-monotone increasing
function. To recover the original function, we use a transla-
tion memory. The size of the translation memory is equal to
the number of terminal nodes in the MTBDD. Experimental
results shows that its amount memory tends to be small.

An edge-valued MDD (k) (EVMDD (k)) is an exten-
sion of the MDD (k), and represents a multi-valued input
M1-monotone increasing function. It consists of one ter-
minal node representing zero and non-terminal nodes with
edges having integer weights, and 0-edges always have zero
weights.

Let p be the number of rules, and |X| = n. An M1-
monotone increasing function is efficiently realized by an
LUT cascade with adders [9] shown in Fig. 10. In this case,
the rails represent sub-functions in the EVMDD (k). The
outputs from each LUTi other than rails represent the sum
of weights of edges. We call such outputs Arails which con-
sist of ari rails. Since the width of the EVMDD (k) for
M1-monotone increasing function is smaller than that of the
MTMDD (s), we can reduce the amount of memory for the
LUT cascade by using an EVMDD (k). Since we realize
the adders by DSP blocks (DSP48Es), FPGA resources are
efficiently used.

The amount of memory for LUTi is (ri +ari) ·2k+ri+1 .
Let |X| = n be the number of inputs, and k = |Xi|. The
LUT cascade has u = dn

k e LUTs. Thus, the LUT cascade
based on an EVMDD (k) requires

∑u
i=0(ri + ari) · 2k+ri+1

bit of memory in total. Also, it requires u adders. Generally,
an increase of k increases the amount of memory, while de-
creases the number of adders. Thus, in this paper, we find a
value of k that uses FPGA resources efficiently.

Example 4.4 Fig. 11 shows the EVBDD obtained from the
MTBDD shown in Fig. 4. At the first level, the width of
the MTBDD is four, while that of the EVBDD is two. First,

Memory

Memory

Memory

0

X
u

X
u-1

X
1

X
u

X
u-1

X
1

u
µ

1−u
µ

2
µ

+

Arails

+

Fig. 10. Conversion of EVMDD (k) into an LUT cascade.

222

X1

{x3,x2}

X1

{x3,x2}

X1

{x3,x2}

555

33333

00
10 01

11

X0

{x1,x0}

X0

{x1,x0}

X0

{x1,x0}

11111 2222

00
01

10

11

=2

x3 x2 ARail Rail

0 0 0 0

0 1 2 1

1 0 3 0

1 1 5 1

x3 x2 ARail Rail

0 0 0 0

0 1 2 1

1 0 3 0

1 1 5 1

Rail x1 x0 Arail

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 2

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

Rail x1 x0 Arail

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 2

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

+

EVMDD (k) LUT cascade

000

0

0

0 1

1

1

0 1

11111

2222

22222

33333

EVBDD (EVMDD(1))

x0

x1

x2

x3

0000

Fig. 11. Conversion of an EVBDD into an LUT cas-
cade.

0 100 200 300 400 500 600

k=1

Memory Size [KB]

Cartesian Product

Transla!on
5-Fields

0 10 20 30 40 50 60

572

472

394

441

245

213

256

363

21

20

31

43

37

33

40

60

LUT

cascades

based on

MTMDD (k)

k=2

k=3

k=4

k=1

k=2

k=3

k=4

LUT

cascades

based on

EVMDD (k)

Single-Memory

Realiza!on

Subrule 1 (9600 rules) Subrule 2 (216 rules)

Fig. 12. Comparison of memory sizes [KB].

Fig. 13. Number of adders
for EVMDD (k).

LUT

cascade
LUT CascadeLUT CascadeLUT Cascade

Maximum

Selector

5-Fileds Cartesian Product

XSA

XDA

XSP

XDP

XPRT

Transla!on

Memory

Subrule 1

(9600 rules)

LUT CascadeLUT CascadeLUT Cascade

LUT CascadeLUT CascadeLUT Cascade

LUT CascadeLUT CascadeLUT Cascade

LUT CascadeLUT CascadeLUT Cascade

LUT

cascade
LUT CascadeLUT CascadeLUT Cascade

Subrule 2

(216 rules)

LUT CascadeLUT CascadeLUT Cascade

LUT CascadeLUT CascadeLUT Cascade

LUT CascadeLUT CascadeLUT Cascade

LUT CascadeLUT CascadeLUT Cascade

Fig. 14. Overall architecture.

convert the EVBDD to the EVMDD (k). Then, convert it to
the LUT cascade. Its memory size is 22× (3+1)+23×2 =
32 bits. A single memory implementation of this function
requires 24×3 = 48 bits. Thus, the LUT cascade can reduce
the total memory size.

5. EXPERIMENTAL RESULTS

5.1. Implementation Setup

We implemented the proposed circuit on the Virtex 7 VC707
evaluation board (FPGA: Xilinx, XC7VX485T-2FFG, 75,900
Slices, 1,030 36KbBRAMs, and 2,800 DSP48E Blocks).

We used the Xilinx PlanAhead version 14.4 for the synthe-
sis. As for the LUT cascade implementation, LUTi whose
size is equal to or more than 36Kb LUTi is implemented by
36Kb BRAMs, while LUTi whose size is less than 36Kb
LUTi is implemented by distributed RAMs using Slices. To
increase the system throughput, we set the dual port mode
to the memory. By Algorithm 3.1, we partitioned 9,816
ACL rules generated by ClassBench [21] into two: Sub-
rule 1 (9,600 rules) and Subrule 2 (216 rules). Then, each
subrule is decomposed into five field functions and a Carte-
sian product function. Finally, each function is realized by
an LUT cascade based on an EVMDD (k). To reduce the
widths for an EVMDD (k), we used the shifting method [14].

5.2. Comparison of EVMDD (k) with MTMDD (k) to
Implement LUT Cascade

We realized the packet classifier by three different methods:

1 A single memory.
2 LUT cascades based on MTMDDs (k).
3 LUT cascades based on an EVMDDs (k).

To find the smallest LUT cascade, we changed the size of
super variables k from one to four. Fig. 12 compares the
memory sizes. It shows that, for all k, EVMDDs (k) pro-
duced smaller LUT cascades than MTMDDs (k). Also, the
memory size takes its minimum when k = 2. As for Carte-
sian product functions, EVMDDs (k) required smaller mem-
ory than MTMDDs (k) even if the translation memories are

Table 2. Comparison with other methods.

Architecture #Rules Memory Memory [B] Throughput Efficiency
[KB] /#Rule [Gbps] [Gbps·Rules/KB]

BV-TCAM (FPGA 2005) [18] 222 16 73.80 10.00 138.7
Memory-based DCFL (FCCM 2008) [3] 128 221 1768.00 24.00 13.9
2sBFCE (FCCM 2008) [11] 4,000 178 45.56 2.06 46.3
Simplified Hyper Cuts (ANCS 2008) [5] 10,000 286 29.28 10.84 379.0
Cartesian-Product with Quadtrees (ASAP 2009) [13] 9,603 432 46.05 91.73 2039.1
Optimized Hyper Cuts (IEEE Trans. VLSI2012) [12] 9,603 612 65.25 80.23 1258.9
Multiple LUT cascades (Proposed) 9,816 233 24.30 345.60 14559.6

used. Fig. 13 shows the number of adders for EVMDD (k).
Although EVMDD (k) requires DSP48Es, it requires less
than 3.8% of available resources. Thus, the usage of DSP48Es
is negligible. As shown in this part, the LUT cascade based
on EVMDDs (k) efficiently utilize the resource of an FPGA.

5.3. Comparison with Other Methods

According to the result of Section 5.2, we implemented the
packet classifier by the LUT cascades based on an EVMDD (k)
shown in Fig. 14, which consumes 2,024 Slices (6.7%), 37
BRAMs (3.6%), and 105 DSP48E blocks (3.8%). Since
the maximum clock frequency was 543.774 MHz, we set
the system clock frequency to 540 MHz. Thus, the system
throughput is 0.54 (MHz)×2 (ports)×320 (Bits) = 345.60 Gbps
for minimum packet size (40 Bytes).

Table 2 compares the proposed method with other meth-
ods. Since different methods use different numbers of rules
of ClassBench, we use the efficiency measure [12] by

Throughput [Gbps]
normalizedarea (Memory [B]/#Rules) to compare them. The
proposed architecture implemented 9,816 rules by 233 [KB]
memory, and its system throughput was 345.60 [Gbps]. Thus,
the efficiency measure is 14559.6 [Gbps·rules/KB]. From
Table 2, the efficiency measure of the proposed architec-
ture is 7.14 times higher than that of Cartesian-Product with
Quadtrees method [13] that was the best among the exist-
ing methods. In this way, we implemented a high-speed and
area efficient system.

6. CONCLUSION

In this paper, we showed a method to implement a packet
classifier. First, the packet classification table was decom-
posed into two subrules. Second, they were decomposed
into five field functions and a Cartesian product function.
And finally, each function was realized by an LUT cascade
based on an EVMDD (2). We implemented the proposed
architecture on a Virtex 7 VC707 evaluation board. Experi-
mental result showed that, the efficiency measure (through-
put per normalized area) is 7.14 times higher than that of an
existing method.

The rules for the packet classifier should be updated (added
and deleted) frequently. The addition and deletion of a reg-
istered vector can be done in time that is proportional to the
number of cells in the LUT cascade [10]. One of a future
project is applying this update method in the proposed ar-
chitecture.

7. ACKNOWLEDGMENTS

This research is supported in part by the Grants in Aid for
Scientistic Research of JSPS. Reviewer’s comments were
useful to improve the paper.

8. REFERENCES

[1] R. E. Bryant, “Graph-based algorithms for boolean function manip-
ulation,” IEEE Trans. Comput., Vol. C-35, No. 8, 1986, pp. 677-691.

[2] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang,
“Spectral transforms for large Boolean functions with applications
to technology mapping,” DAC1993, 1993, pp. 54-60.

[3] G. S. Jedhe, A. Ramamoorthy, and K. Varghese, “A scalable high
throughput firewall in FPGA,” FCCM2008, 2008, pp. 43-52.

[4] T. Kam, T. Villa, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Multi-valued decision diagrams: Theory and appli-
cations,” Multiple-Valued Logic: An International Journal, Vol. 4,
No. 1-2, 1998, pp. 9-62.

[5] A. Kennedy, X. Wang, Z. Liu, and B. Liu, “Low power architecture
for high speed packet classification,” ANCS2008, 2008, pp. 131-140.

[6] Y-T. Lai and S. Sastry, “Edge-valued binary decision diagrams for
multi-level hierarchical verification,” DAC1992, 1992, pp. 608-613.

[7] L. Xu, B. Yang, Y. Xue, and J. Li, “Packet classification algorithms:
From theory to practice,” INFOCOM2009, 2009, pp. 648-656.

[8] S. Nagayama and T. Sasao, “Complexities of graph-based repre-
sentations for elementary functions” IEEE Trans. Comput., Vol. 58.
No. 1, Jan. 2009, pp.106-119.

[9] S. Nagayama, T. Sasao, and J. T. Butler, “Design method for numeri-
cal function generators using recursive segmentation and EVBDDs,”
IEICE Trans. Fundamentals, Vol. E90-A, No. 12, 2007, pp. 2752-
2761.

[10] H. Nakahara, T. Sasao and M. Matsuura, “A CAM emulator using
look-up table cascades,” RAW2007, 2007, CD-ROM-RAW, paper-2.

[11] A. Nikitakis and I. Papaefstathiou, “A memory-efficient FPGA-
based classification engine,” FCCM2008, 2008, pp. 53-62.

[12] W. Jiang and V. K. Prasanna, “Scalable packet classification on
FPGA,” IEEE Trans. on VLSI, Vol. 20, No. 9, 2012, pp. 1668-1680.

[13] W. Jiang and V. K. Prasanna, “A FPGA-based parallel architec-
ture for scalable high-speed packet classification,” ASAP2009, 2009,
pp. 24-31.

[14] R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,” ICCAD1993, pp. 42-47, 1993.

[15] T. Sasao, Memory-based logic synthesis, Springer, 2011.
[16] T. Sasao, “On the complexity of classification functions,” IS-

MVL2008, 2008.
[17] T. Sasao, M. Matsuura, and Y. Iguchi, “A cascade realization of

multiple-output function for reconfigurable hardware,” IWLS2001,
2001, pp. 225-230.

[18] H. Song and J. W. Lockwood, “Efficient packet classification for net-
work intrusion detection using FPGA,” FPGA2005, 2005, pp. 238-
245.

[19] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
scalable layer four switching,” SIGCOM1998, 1998, pp. 191-202.

[20] D. E. Taylor, “Survey and taxonomy of packet classification tech-
niques,” ACM Computing Curveys, Vol. 37, No. 3, 2005, pp. 238-
275.

[21] D. E. Taylor and J. S. Turner, “ClassBench: a packet classification
benchmark,” INFOCOM2005, 2005, Vol. 3, pp. 2068-2079.

[22] R. Tucker, “Optical packet-switched WDM networks: a cost and
energy perspective,” OFC/NFOEC2008, 2008.

