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Abstract
This paper presents a virus scanning engine. After show-

ing the difference between ClamAV (an anti-virus software)
and SNORT (an intrusion detection software), we show a
new architecture for the virus scanning engine, which is
different from that of the intrusion detection engine. The
new architecture consists of a parallel finite-input memory
machine (PFIMM) and general purpose MPUs. It uses two-
stage matching. That is, in the first stage, the parallel hard-
ware filter quickly scans the text to find partial matches, and
in the second stage, the MPU scan the text to find the total
match. To reduce the memory size, compressed match vec-
tors are used. The system is implemented on the Stratix III
FPGA, where 65,536 ClamAV virus patterns are stored. As
for the area-performance ratio, our system is 1.2-26.3 times
more efficient than existing ones.

1 Introduction
A malware (a composite word from malicious software)

intends to damage computer systems. With the wide use
of the Internet, users can easily access and download dan-
gerous data. So, the risk of infection by the malware is in-
creasing. Malware secretly installs a bot virus, a back door,
or a keylogger. As a result, the exploitation of the pass-
word, the stealing of the information, and illegal remote
operation can do damage to computer users. Although a
software-based virus scanning system can clean and isolate
the malware, throughput for software-based scanning is at
most tens of mega bits per second (Mbps) [12]. Thus, the
software-based approach cannot keep up with the modern
Internet throughput which is more than one giga bits per
seconds (Gbps). Malware is becoming more prevalent and
more complex, and so virus scanning on computer systems
will be a bottleneck in the future. Recently, hardware based
virus scanning systems are attached to the gateway between
the Internet and the Intranet [16]. The most important part
of the virus scanning system is the virus scanning engine.
Other part can be realized by the conventional technique.
So, in this paper, we show a virus scanning engine that uses
the parallel finite-input memory machine and MPUs. Some
virus scanning software, e.g., Kaspersky [8], updates the
virus data every an hour. Although, the random logic imple-
mentation of the virus scanning circuit on the FPGA [14] is

fast and compact, the time for the place-and-route is longer
than the period for the virus pattern update. This implies
that such system must be suspended during the update. To
reduce the memory size, we introduce the finite-input mem-
ory machine (FIMM) that quickly scans the text to find par-
tial matches. Then, we partition the FIMM to further re-
duce memory size. Since the FIMM only detects partial
matches, an MPU is used to find the total match. This is
called the two-stage matching [5, 18]. The proposed engine
is memory-based, so the power consumption is lower than
the TCAM-based ones [3, 18].

The rest of the paper is organized as follows: Chapter 2
introduces the virus scanning; Chapter 3 describes the two-
stage matching using FIMM; Chapter 4 shows the compres-
sion methods of the FIMM; Chapter 5 shows the implemen-
tation results on Altera FPGA; and Chapter 6 concludes the
paper.

2 Virus Scanning
2.1 Virus Scanning Problem

A virus scanner detects the malware on executable code
or data. Text denotes a string of characters in which there is
a possible virus. The malware is specified by a pattern1

represented by a restricted regular expression. Virus
scanning corresponds to the pattern matching that detects
variable length patterns in the text.
2.2 Restricted Regular Expression for

Virus Scanning in ClamAV

A pattern consists of sub-patterns, and each sub-pattern
is represented by a regular expression consisting of char-
acters and meta characters. A character is represented by
8 bits, or a pair of hexadecimal numbers. The length of a
pattern is the number of characters in the pattern. In this
paper, k denotes the number of patterns, and c denotes the
length of a pattern. Table 1 shows meta characters used
in the ClamAV [6], and Table 2 shows examples of virus
patterns in ClamAV. Table 3 compares the current version
of ClamAV (v.0.94.2) with that of SNORT (v.2.8.3.2) [13].
It shows that regular expressions for ClamAV are simpler

1Pattern is also called a signature
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than that for SNORT. However, the number of patterns in
ClamAV is much larger than that in SNORT. Thus, in the
virus scanning system, a memory efficient architecture is
required.

Table 1. Meta Characters Used in ClamAV.
Meaning

?? An arbitrary character
* Repetition of more than zero (Kleene closure)
() Specify the priority of the operation
| Logical OR
{n, m} Repetition (more than n and less than m)

Table 2. Virus Patterns in ClamAV.
Virus Name Pattern

Trojan.Bat.DelY-3 64656c74726565{-1}2f(59|79)20633a5c2a2e2a
Trojan.Bat.DelY 44454c54524545202f(59|79)20633a5c2a2e2a
Trojan.Bat.MkDir.B 406d64202572616e646f6d25????676f74

6f20486f6f
W32.Gop 736d74702e796561682e6e65*2d20474554

204f494351
Worm.Bagle-67 6840484048688d5b0090eb01ebeb0a5ba9ed46

Table 3. Comparison ClamAV with SNORT
ClamAV Snort

# of patterns 514,287 3,533
average pattern length 32.9 193.7
average # of meta-characters 0.081 46.7

2.3 Aho-Corasick Method

Here, we briefly introduce the Aho-Corasick
method (AC method) [1]. The AC method performs
the string matching using an AC automaton. To obtain
the AC automaton, first, the given patterns are represented
by a text tree (Trie). Next, the failure paths that indicate
the transitions for the mismatches are attached to the text
tree. Since the AC automaton stores failure paths, no
backtracking is required. By scanning the text only once,
the AC automaton can detect all the patterns. The AC
automaton can be realized by a state machine consisting of
a the memory and a register. The memory stores the state
transition functions and the output functions, while the
register stores the state variables. The number of bits for
the register is much smaller than that for the memory, so
we ignore the bits for the register. In this paper, the amount
of memory denotes the memory bits that stores the state
transition functions and the output functions.

2.4 Two-stage Matching

An AC automaton accepting patterns of length c. Table 3
shows that, for ClamAV, the average length of pattern is c̄ =
32.9. Hence, the AC automaton is quite large. ClamAV
uses the two-stage matching to achieve a high-speed and
memory-efficient system. The first stage scans the text to
find a partial match consisting of three characters using a
compact AC automaton [5]. The second stage exactly scans
the text to find the total match using hash tables when the
first stage detects the partial match. To perform the second
stage, additional off-chip memory and the MPU are used.

Trojan.Bat.MkDir.B
= 40 6d 64 20 25 72 61 6e 64 6f 6d 25 ?? ?? 67 6f 74 6f 20 48 6f 6f
Text

0c ed 40 6d 64 20 25 72 61 6e 64 6f 6d 25 3f 20 67 6f 74 6f 20 48 6f 6f

match ‘{40 6d}’

40 6d 64 20 25 72 61 6e 64 6f 6d 25 ?? ?? 67 6f 74 6f 20 48 6f 6f

match ‘Trojan.Bat.MkDir.B’

1st stage
2nd stage

Figure 1. An Example of the Two-stage
Matching.

Although the two-stage matching is slower than the original
AC method, it drastically reduces the memory size for the
AC automaton.
Example 2.1 Fig. 1 illustrates the two-stage matching that
detects the pattern of Trojan.Bat.MkDir.B in Table 2. First,
it detects 406d, then it detects the whole pattern of Tro-
jan.Bat.MkDir.B. (End of Example)

2.5 Profile Analysis for Virus Scanning

To analyze the profile of the two-stage matching on a
PC, we selected 512 patterns from ClamAV, and performed
the two-stage matching for 10 executable codes. The pro-
file analysis shows that the first stage spends 83% of the
CPU time, while the second stage spends 17% of the CPU
time. Thus, to improve the throughput, we considered the
following:

High-speed AC automaton to improve the first stage.
We use hardware instead of software. For the virus scan-
ning, since the packet can be inspected independently, a
parallel processing using hardware is applied.

Reduction of the partial matches in the first stage to
reduce the load of the second stage. Increasing the length
c reduces the partial matches, and reduces the work for the
MPU. However, this increases the amount of memory in the
first stage.

3 Two-stage Matching Using FIMM

3.1 Finite-Input Memory Machine

Since the state transitions for the AC automaton is com-
plex, the size of memory tends to be large. For the intru-
sion detecting system, bit partitioning is used to reduce the
size of the circuit [15]. However, for virus scanning sys-
tem, the size of the circuit would be too large even if the bit
partitioning method is used2. By restricting transitions, we
have a finite-input memory machine (FIMM) [9] shown
in Fig. 2. In Fig. 2, Reg denotes an 8-bit parallel-in parallel-
out register. The FIMM stores the past c inputs to the shift
register. The memory produces the match number. In the
FIMM, it contains many equivalent states. Thus, the num-
ber of states of the FIMM is much larger than that of AC

2It will be shown in Table 4
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Figure 2. Finite-Input Memory Ma-
chine (FIMM).

automaton. However, this eliminates the circuits for transi-
tion functions. Furthermore, we can reduce the size of the
memory drastically by bit partitioning to be explained in the
next part.

3.2 Bit Partitioned FIMM
Let MFIMM be the size of memory to realize the output

function of the FIMM, k be the number of patterns, and c
be the length of the patterns. Then, we have

MFIMM = 28c�log2(k + 1)�. (1)

As started before, the amount of memory for the state vari-
ables realized by the shift register is much smaller than that
for the output functions, so it is neglected. The number of
inputs for the memory is 8c, so the direct implementation
of the FIMM by a single memory and a register is expen-
sive. To further reduce the memory size, we partition the
FIMM into r units. In other words, we construct r indepen-
dent sequential machines. Fig. 3 shows the bit-partitioned
FIMM (r FIMM). Since each memory only scans 8

r c bits
out of 8c bits, non-stored patterns may be matched. To solve
this problem, the output for each FIMM is encoded to 1-
hot code to form a MV (Match Vector). Then, the match
number is detected by the bitwise-AND operation of all the
MVs. Let k be the number of patterns, then the MV consists
of k bits. Let MrFIMM be the total amount of memory for
r FIMM. Then, we have

MrFIMM = 2
8
r ck × r, (2)

where r = 1, 2, 4, and 8. When r = 8, Expr. (2) takes its
minimum. Thus, we partition the FIMM into eight small
FIMMs. The resulting circuit (8 FIMM) consists of eight
memories, eight shift registers, and a bitwise-AND. From
Expr. (2), the total amount of memory for the 8 FIMM is

M8FIMM = 2ck × 8 = 2c+3k. (3)

This is much smaller than the size of memory obtained
by [15].

3.3 Virus Scanning Engine
Fig. 4 shows the virus scanning engine consisting of

128 units of 8 FIMMs. It is called PFIMM(Parallel
FIMM)1024, since it uses 1024 memories. The FIFO stores
the pattern numbers of partial matches and the positions for
the detected sub-patterns. When the sub-pattern is detected,
the FIFO sends an interrupt signal (IRQ) to the MPU. When
the MPU accepts an IRQ, it scans the full text to check if it
is a total match or not.
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Figure 3. Bit-Partitioned FIMM (r FIMM).
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Figure 4. Virus Scanning Engine.

4 Compression of the Match Vectors

4.1 CMV (Compressed Match Vector)

For the 8 FIMM storing k patterns, an MV consists of k
bits. When k is large, e.g., k = 512, the memory is too large
to implement, and the bitwise-AND circuit is too large. This
decreases the throughput. In this paper, we compress the
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Figure 5. 8 FIMM Matches {40 6D}.
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Figure 6. An Example of the False Positive.

MV to the CMV (Compressed Match Vector). To obtain
the CMV, the MV is partition into groups of m bits, and the
OR operation is applied to the m bits in each group. In other
word, if a group contains ‘1’ anywhere, we compress the
group to ‘1’, otherwise to ‘0’. m is called the compression
ratio. Let MCMV be the total amount of memory for an
8 FIMM producing the CMV. From Expr.(3), we have

MCMV = 2c k

m
× 8. (4)

Since the CMV is a lossy compression, non-stored pattern
can be matched (false positive). However, this compression
never miss the total matches. Next example illustrates the
false positive.

Example 4.2 Fig. 6 compress the MV in Fig. 5 to the CMV,
where the compression ratio is m = 2. In Fig. 6, it shows
matched patterns are {40 6D, 68 40} and {60 4D}, but the
last one is not a total match. (End of Example)

5 Experimental Results

5.1 Determination of Parameters from
Simulation

Increasing the compression ratio m increases the false
positive, so partial matches in the 8 FIMM also increases.
As a result, the number of interrupts for the MPU increases.
When the interrupt occurs during the matching operation in
the MPU, the system suspends the 8 FIMM. We obtained
the maximum ratio m that does not suspend 8 FIMM, ex-
perimentally. Let D(m) (characters) be the average interval
of matches in the 8 FIMM, T8FIMM be the matching time
for one character on the 8 FIMM, T̄MPU be the average
matching time on the MPU, and n8FIMM be the number

of 8 FIMMs. To avoid the suspension in 8 FIMMs, the fol-
lowing relation must be true:

1
n8FIMM

T8FIMMD(m) � T̄MPU . (5)

To obtain the maximum m that does not violate the above
relation, we implemented a cycle-accurate virus scanning
engine in C-language. The assumption for the target device
is Altera FPGA StratixIII EP3SL340H1152C3NE5 (con-
taining 1,040 M9ks) at 200 MHz. We obtained T̄MPU =
1, 384 nsec by performing the total match on the
NiosII/f (embedded MPU) at 100 MHz3. When 8 FIMM
operates at 200 MHz, we have T8FIMM = 5 nsec/character.
Therefore, when n8FIMM = 128, from Expr.(5), we have
D(m) � 17, 612.8 characters. Let the number of patterns
k be 512, the pattern length c be eight4, and the number
of 8 FIMMs be 128. Thus, 128 8 FIMM can store 65,536
ClamAV virus sub-patterns. To estimate D(m), our virus
scanning engine scanned selected 100 executable codes in
Cygwin distribution [7] for our simulation. From the simu-
lation results, for m =8, 16, 32, 64, and 128, the maximum
ratio m that satisfies the condition D(m) � 17, 612.8 is
16. Thus, the number of bits for the CMV is 512/16 = 32.
Note that, to fit the embedded memory of the Altera FPGA,
m is selected to a power of 2. From Expr.(4), when c = 8,
k = 512, and m = 16, the total amount of memory for the
8 FIMM is 28 × 32 × 8 = 8, 192 × 8 bits. The 8 FIMM
of this size efficiently fits the embedded memory of the Al-
tera FPGA (9 Kbits). Thus, in our implementation, we can
store 512 patterns in the 8 FIMM. For 128 8 FIMMs, the
necessary number of embedded memories is 1,024 that can
be implemented to our target device. Also, we implement a
single MPU with the off-chip memory.

5.2 Implementation of the Virus Scanning
Engine

We implemented the virus scanning engine us-
ing the PFIMM1024 on the Altera FPGA StratixIII
EP3SL340H1152C3NE5 (containing 270,400 ALUTs, and
1,040 M9ks). To perform the total match, we used the em-
bedded processor NiosII/f. We also stored the executable
code into the 1 giga bytes DDR2-SDRAM. For the synthe-
sis tool, we used QuartusII (v.8.0). The PFIMM1024 op-
erates at 199.40 MHz, and consumes 75,826 ALUTs that
is 28% of the total ALUTs. Also, the NiosII/f operates at
100.00 MHz, and consumes 1,478 ALUTs. Our virus scan-
ning engine scans one character in every clock. Thus the
throughput Th is 0.1994 × 8 = 1.595 Gbps. The 8 FIMM
can store up to 512 patterns with at most 8 characters. Since
the PFIMM1024 consists of 128 units of 8 FIMMs, it can
store up to 65,536 patterns. The amount of memory for

3The 8 FIMM produces a unique index for each sub-pattern, while the
bloom filter only shows the match or mismatch. Thus, the work for total
match in our method is simpler and easier.

4When the pattern length is less than eight, the pattern is expanded into
a set of 8-character patterns in the 8 FIMM. Fortunately, the number of
these short patterns is less than 100. So, even if we can expanded them,
the increased hardware is small.
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Table 4. Comparison with Existing Methods.
Method Th # of MUC Th/MUC Implementation

Gbps Patterns Bytes/char
Aho-Corasick (AC Method)[17] 6.0 1,533 2896.2 0.0020 ASIC
Aldwari et al.[2] 14.0 1,542 126.0 0.1111 FPGA+SRAM
Bitmap compressed Aho-Corasick[17] 8.0 1,533 154.0 0.0519 ASIC
Path compressed Aho-Corasick[17] 8.0 1,533 60.0 0.1333 ASIC
Alicherry et al.[3] 20.0 100 48.0 0.4166 FPGA+TCAM
Yu et al.[18] 2.0 1,768 3.0 0.6666 FPGA+TCAM+MPU
USC RegExpController[5] 1.4 1,316 46.0 0.0304 FPGA+MPU
Hardware Bloom Filter[4] 0.5 35,475 1.5 0.3333 FPGA+SDRAM
Proposed method 1.6 65,536 2.0 0.8000 FPGA+MPU+SDRAM

the 8 FIMM is 8 KBytes(1024 Bytes×8). Let the memory
utilization coefficient (MUC) be the necessary amount of
memory per a character. Then, MUC for the PFIMM1024
is 8,192×128

65,536×8 = 2.000 Bytes/Char.

5.3 Comparison with Existing Methods

Table 4 compares existing methods for the regular ex-
pression matching. They use different methods on tech-
nologies: FPGAs and ASICs. To make a fair compari-
son, we use the normalized throughput5Th/MUC, where
Th/MUC = Th

MUC . In Table 4, Th denotes the throughput
for a pattern matching engine (Gbps); # of patterns denotes
the number of patterns; MUC denotes the memory utiliza-
tion coefficient (Bytes/Char); and Th/MUC denotes the
normalized throughput.

Table 4 shows that only our method can store 65,536 pat-
terns in a single FPGA. Also, as for Th/MUC, our method
is about 400 times better than AC method [17], and is 1.2-
26.3 times better than other methods. The reason for our
efficiency is that MUC for our method is quite small, since
we partition the FIMM into 8 FIMM and compress the MV
to the CMV. As for Th/MUC, Yu et al.[18] is the second to
our method. However, they use the TCAM which is quite
expensive and dissipates much power. If we consider the
cost of TCAM, our method is much more efficient than Yu
et al.[18].

6 Conclusion and Comments

This paper showed a virus scanning engine using the
PFIMM1024 and general purpose MPUs. To perform effi-
cient prefiltering, we used the parallel finite-input memory
machine (PFIMM). To further reduce the memory size, we
used CMV. We successfully stored 65,536 ClamAV virus
patterns on the PFIMM1024. For the area-performance ra-
tio, our system is 1.2-26.3 times more efficient than existing
ones.

Our virus scanning engine has a vulnerability. When the
attacker sends a sequence of sub-patterns stored in our en-
gine (performance attack), it generates an IRQs for every
clock and overflows the MPU. Kumar et al. [10] has pro-
posed a method to protect against performance attack. It
attaches a flow counter to the FIFO in Fig. 4. When the
value of the counter exceeds some threshold, the circuit de-
tects the performance attack. Our virus scanning engine can
adopt Kumer’s method.

5A similar measure is used in [14].
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