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ABSTRACT

Two-variable numerical functions are widely used in vari-
ous applications, such as computer graphics and digital sig-
nal processing. Fast and compact hardware implementations
are required. This paper introduces the bilinear interpola-
tion method to produce fast and compact numerical function
generators (NFGs) for two-variable functions. This paper
also introduces a design method for symmetric two-variable
functions. This method can reduce the memory size needed
for symmetric functions by nearly half with small speed
penalty. Experimental results show that the bilinear inter-
polation method can significantly reduce the memory size
needed for two-variable functions, and the speed of NFGs
based on the bilinear method is comparable to that of NFGs
based on tangent plane approximation. For a complicated
function, our NFG is faster and more compact than a circuit
designed using a one-variable NFG.

1. INTRODUCTION

The availability of large quantities of logic in LSIs and
the need for high-speed arithmetic function computation in
modern data processing applications have created a unique
research opportunity [7]. High-speed arithmetic func-
tion computation will almost certainly result in significant
changes in the way engineers perform data processing tasks.
For example, image recognition tasks will more likely be
performed at the site of the image collection, such as on-
board reconnaissance vehicles.

High-speed computation of one-variable arithmetic func-
tions (e.g. sin(x) and log(x)) has been extensively studied [2,
6,8,10–12]. However, significantly less work has been done
on the high-speed implementation of multi-variable func-
tions (e.g.

√
x2 + y2 + z2 and arctan(x/y)) [3, 4, 13]. The

existing design approaches apply a different method for each
function realized. As far as we know, no systematic design
method for generic multi-variable functions has been pre-
sented.

A straightforward design method for an arbitrary multi-
variable function is to use a single memory in which the
address is a combination of values of variables and the con-
tent of that address is the corresponding value of function.
This method is fast, but requires a 2mn-word memory to im-
plement an m-variable function with n bits for each variable.
Thus, unlike one-variable functions, this method is imprac-
tical even for low-precision applications.

To produce a practical implementation, multi-variable
functions can be designed using a combination of one-
variable function generators, multipliers, and adders [3, 4].

This design can reduce the required memory size. However,
depending on the function, it can produce a slow implemen-
tation because of its complex architecture. Also, complex
architecture makes error analysis harder.

This paper proposes a systematic design method for two-
variable functions. Since our design method is based on a
piecewise polynomial approximation, hardware architecture
is simple even for complex functions. However, polynomial
approximation methods tend to require large memory size.
For multi-variable functions, using higher-order polynomi-
als is not always effective to reduce the memory size. This is
because, for multi-variable polynomials, higher polynomial
order requires many more polynomial coefficients. Also,
higher-order polynomials produce slower NFGs. Thus, for
polynomial approximation methods, reducing memory size
with a small speed penalty is a key issue. To accomplish this,
this paper introduces the bilinear interpolation method. This
paper also introduces a design method and an architecture
for symmetric two-variable functions. Error analysis for our
NFGs is omitted because it is almost the same as [11]. It is
guaranteed that the maximum error of our fixed-point NFGs
is smaller than 2−m (i.e., m-bit accuracy NFGs), where m is
the number of fractional bits for the inputs and the output.

2. POLYNOMIAL APPROXIMATION USING
BILINEAR INTERPOLATION

Bilinear interpolation is an extension of linear interpola-
tion. It interpolates two-variable functions f (X ,Y ) using
four points. Let the four points be (X1,Y1), (X1,Y2), (X2,Y1),
and (X2,Y2), and let f11 = f (X1,Y1), f12 = f (X1,Y2), f21 =
f (X2,Y1), and f22 = f (X2,Y2). Then, the bilinear interpola-
tion g(X ,Y ) is given by:

g(X ,Y ) =
f11(X2 −X)(Y2 −Y )+ f21(X −X1)(Y2 −Y )

(X2 −X1)(Y2 −Y1)

+
f12(X2 −X)(Y −Y1)+ f22(X −X1)(Y −Y1)

(X2 −X1)(Y2 −Y1)

By expanding and rearranging this, we obtain the following
form: g(X ,Y ) = CxyXY +CxX +CyY +C0, where

Cxy =
f11 − f21 − f12 + f22

(X2 −X1)(Y2 −Y1)
,

Cx =
− f11Y2 + f21Y2 + f12Y1 − f22Y1

(X2 −X1)(Y2 −Y1)
,

Cy =
− f11X2 + f21X1 + f12X2 − f22X1

(X2 −X1)(Y2 −Y1)
, and



C0 =
f11X2Y2 − f21X1Y2 − f12X2Y1 + f22X1Y1

(X2 −X1)(Y2 −Y1)
.

To approximate a given two-variable function using bi-
linear interpolation, we first partition a given domain of the
function into segments. For each segment, we approximate
the function using bilinear interpolation. In this case, the
memory size and speed of an NFG are strongly dependent
on the efficiency of the segmentation algorithm. Thus, ef-
fective segmentation algorithms are needed to achieve fast
and compact NFGs. We use a recursive planar segmenta-
tion algorithm [9] (based on bilinear interpolation).

The algorithm begins by computing a bilinear interpola-
tion using the four corner points of the given domain. This
is an initial approximation. If that approximation error is
larger than the given acceptable error, then the domain is
partitioned into four equal-sized square segments. For each
segment, a bilinear interpolation is computed using the four
corner points of the segment. The same process is recur-
sively repeated until all segments have an acceptable ap-
proximation error. Note that this algorithm creates a seg-
ment of size wi × wi, where wi = 2hi × 2−min , min is the
number of fractional bits for X and Y , and hi is an integer.
That is, all the segmentation points Pi and Qi are restricted
to values such that the least significant hi bits are 0 (i.e.,
Pi = (. . . p− j+1 p− j 00 . . . 0)2, where j = min −hi).

In this algorithm, to reduce the approximation error, the
maximum positive error max f g and the maximum negative
error min f g are equalized by a vertical shift of g(X ,Y ) with
correction value v = (max f g + min f g)/2. Thus, the approx-
imation error is (max f g −min f g)/2, and the approximating
polynomial is g(X ,Y )+ v.

For each segment {[Bx,Ex), [By,Ey)}, since Bx ≤ X < Ex
and By ≤ Y < Ey hold, we can offset X and Y by Bx and By
to compute the approximating polynomial g(X ,Y )+ v. By
using the offset inputs (X −Bx) and (Y −By) instead of X
and Y , we reduce the size of multipliers needed to compute
g(X ,Y )+v. By substituting X −Bx +Bx and Y −By +By for
X and Y respectively, we transform g(X ,Y )+ v as follows:

g(X ,Y )+v = Cxy(X −Bx +Bx)(Y −By +By)+Cx(X −Bx +Bx)
+Cy(Y −By +By)+C0 +v

= Cxy(X −Bx)(Y −By)+(Cx +CxyBy)(X −Bx)
+(Cy +CxyBx)(Y −By)+CxyBxBy +CxBx +CyBy +C0 +v

= Cxy(X −Bx)(Y −By)+C′
x(X −Bx)+C′

y(Y −By)+C′
0, (1)

where C′
x = Cx + CxyBy, C′

y = Cy + CxyBx, and C′
0 =

CxyBxBy +CxBx +CyBy +C0 + v.

3. ARCHITECTURE BASED ON BILINEAR
INTERPOLATION

Fig. 1 shows architectures for two-variable NFGs realizing
(1). The Segment Index Encoder converts values of X and
Y into a segment number. This, in turn, is applied as the
address input of the Coefficients Memory. The coefficients
are applied to adders and multipliers to form the polynomial
value g(X ,Y )+v. Note the use of bitwise ANDs in Fig. 1 to
compute X −Bx and Y −By. In recursive segmentation, we
can realize X −Bx and Y −By using AND gates driven on
one side by Bx and By, respectively [8].

The segment index encoder realizes the segment index
function: {0,1}n × {0,1}n → {0,1, . . . ,k − 1} shown in
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Fig. 1. Architectures for two-variable NFGs based on bilin-
ear interpolation.
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Fig. 2(a), where X and Y have n bits, and k denotes the
number of segments. We realize this function with the ar-
chitecture shown in Fig. 2(b). We use an edge-valued BDD
(EVBDD) [5] to design this architecture. In this architec-
ture, the interconnecting lines between adjacent LUT mem-
ories determine the position in the EVBDD (labeled rails),
and the outputs from each LUT memory to the adders tally
the function value (labeled Arails). Consider the design of
the LUT cascade and adders in Fig. 2(b), given the segmen-
tation produced by the algorithm in [9].

We begin by representing the segment index function us-
ing a multi-terminal BDD (MTBDD) [1]. Then, we con-
vert the MTBDD into an EVBDD. By decomposing the
EVBDD, we obtain the architecture in Fig. 2(b). For more
detail on this architecture, see [8].

In our architecture, the coefficients memory and the LUT
memories of the segment index encoder are implemented by
RAMs. Thus, by changing the data for the coefficients mem-
ory and the LUT memories, a wide class of two-variable
functions can be realized by a single architecture.

4. DESIGN METHOD FOR SYMMETRIC
FUNCTIONS

Definition 1 A two-variable function f (X ,Y ) is symmetric
if f (X ,Y ) = f (Y,X).



Table 1. Number of segments needed for three design meth-
ods.

Function Domain X and Y : 12-bit accuracy
f (X ,Y ) X Y (Approximation error: 2−14)

Tangent Bilinear Sym.

sin(πX)
√

Y [0,1) (0,1) 38,773 29,875 N/A
sin(πXY ) [0,1) [0,1) 26,122 8,389 4,232

X4Y 5 [0,1) [0,1) 8,179 3,592 N/A
1/
√

X2 +Y 2 (0,1) (0,1) 173,552 103,046 51,687
XY/

√
X2 +Y 2 (0,1) (0,1) 6,523 4,114 2,104

WaveRings [0,π] [0,π] 28,377 16,278 8,202
Sombrero (0,8) (0,8) 32,371 18,664 9,398
Gaussian (0,1) (0,1) 141,113 86,633 N/A√

X2 +Y 2 (0,1) (0,1) 6,160 4,093 2,083
3
√

X3 +Y 3 (0,1) (0,1) 6,790 3,955 2,027
Sym.: Two symmetric segments are counted as one segment.

Symmetric functions are commonly found in practical ap-
plications of NFGs. For example,

√
X2 +Y 2, which is used

in converting from rectangular to polar coordinates, is sym-
metric. This section presents a design method and an archi-
tecture taking advantage of the function’s symmetry.

Definition 2 A segmentation is symmetric if for every seg-
ment {[Bx1,Ex1), [By1,Ey1)} such that Bx1 �= By1 or Ex1 �=
Ey1, there is another segment {[Bx2,Ex2), [By2,Ey2)} such
that Bx1 = By2, Ex1 = Ey2, By1 = Bx2, and Ey1 = Ex2. Sym-
metric segments are a pair of such segments.

Lemma 1 Let f (X ,Y ) be a symmetric function, and let
g1(X ,Y ) and g2(X ,Y ) be bilinear interpolations of f (X ,Y )
for symmetric segments. Then, g1(X ,Y ) = g2(Y,X).

Theorem 1 The segmentation of a symmetric function pro-
duced by the recursive planar segmentation algorithm is
symmetric.

From Lemma 1 and Theorem 1, we can use only one
bilinear interpolation to approximate the given symmetric
function in symmetric segments. By assigning the same seg-
ment index to symmetric segments, we can reduce the size
of coefficients memory by nearly half.

Fig. 1(b) shows an architecture for symmetric functions.
Here, the coefficients memory stores only data for segments
such that X ≤ Y . For other segments, approximated val-
ues are computed using Lemma 1. Since the comparator
and multiplexers operate in parallel with the segment index
encoder, there is no speed penalty due to these additional
circuits.

5. EXPERIMENTAL RESULTS

5.1. Number of Segments and Memory Sizes

Table 1 compares the number of segments needed for the
bilinear interpolation method with that for the tangent plane
approximation1 [9] for various functions. For those func-
tions that are symmetric, Table 1 shows the number of sym-
metric segments. In this table, WaveRings, Sombrero, and
Gaussian are:

WaveRings =
cos

(√
X2 +Y 2

)
√

X2 +Y 2 +0.25

1In the tangent plane approximation, the function is realized using
g(X ,Y ) = CxX +CyY +C0.

Table 2. Total memory sizes needed for 12-bit accuracy
NFGs based on three design methods.

f (X ,Y ) Tangent Bilinear Sym.

sin(πX)
√

Y 2,030,356 2,167,788∗ N/A
sin(πXY ) 1,313,684 701,311 356,164

X4Y 5 516,230 266,644 N/A
1/
√

X2 +Y 2 13,054,030 9,412,758 4,698,276
XY/

√
X2 +Y 2 369,189 293,330 153,176

WaveRings 1,886,924 1,559,560 797,279
Sombrero 2,051,615 1,487,068 757,238
Gaussian 11,345,482 8,285,179 N/A√

X2 +Y 2 316,128 287,868 153,291
3
√

X3 +Y 3 405,576 294,328 154,309
∗Bilinear is worse than tangent for only 1 case.

Sombrero =
sin

(√
X2 +Y 2

)
√

X2 +Y 2
, Gaussian =

1

Y
√

2π
e−

X2

2Y2

Table 1 shows that, for all functions, the bilinear in-
terpolation method requires fewer segments than the tan-
gent plane approximation. And, the number of symmet-
ric segments is much smaller. Thus, the bilinear interpo-
lation method and the symmetric technique significantly re-
duce the number of words in the coefficients memory. For
sin(πX)

√
Y , the bilinear interpolation method is also supe-

rior to the tangent plane method. However, the number of
segments needed in the bilinear interpolation method is only
slightly smaller.

Table 2 compares the total memory sizes needed for
NFGs based on the three design methods. Note that our
NFGs have two kinds of memories: coefficients memory
and LUT memory; the memory size shown is the sum of
the two.

Table 2 shows that, for all functions except for
sin(πX)

√
Y , the bilinear method uses less memory than the

tangent plane approximation, even though the bilinear in-
terpolation requires more polynomial coefficients. That is,
for many functions, the reduction in the number of segments
due to bilinear interpolation is sufficient to compensate for
the increase of polynomial coefficients. Especially for sym-
metric functions, using the symmetric technique shown in
Section 4 reduces further the memory size.

5.2. FPGA Implementation Results

We implemented 12-bit accuracy NFGs based on the three
design methods using the Altera Stratix III FPGA. Since the
FPGA has adaptive look-up tables (ALUTs) that can real-
ize fast adders, synchronous memory blocks, and dedicated
DSPs (multipliers), our NFGs are efficiently implemented
by those hardware resources in the FPGA. Table 3 compares
the FPGA implementation results for 12-bit accuracy. In this
table, the columns “Delay” show the total delay time of each
NFG from the input to the output, in nanoseconds.

The NFGs based on tangent plane approximation are
faster because they require fewer multipliers and fewer poly-
nomial coefficients. However, for the 1/

√
X2 +Y2 and

Gaussian functions, the memory needed for NFGs based
on tangent plane approximation is so large that they could
not be implemented in the FPGA. On the other hand, NFGs
based on the bilinear method require less memory, and their
speed is comparable to the speed of the NFGs based on tan-
gent plane approximation. Since the symmetric technique
significantly reduces the memory size, it is easier to im-
plement with an FPGA. Table 3 shows that the symmetric



Table 3. FPGA implementation of 12-bit accuracy NFGs based on three design methods.
FPGA device: Altera Stratix III (EP3SL340F1517C4) Logic synthesis tool: Synplify Pro Ver. 8.8

Function Tangent plane Bilinear interpolation Symmetric method
f (X ,Y ) #ALUTs #DSPs Freq. #stages Delay #ALUTs #DSPs Freq. #stages Delay #ALUTs #DSPs Freq. #stages Delay

[MHz] [ns] [MHz] [ns] [MHz] [ns]
sin(πX)

√
Y 270 4 243 12 49 394 6 262 15 57 N/A N/A N/A N/A N/A

sin(πXY ) 131 4 285 7 25 274 14 245 9 37 351 14 245 10 41
X4Y 5 235 4 243 10 41 286 14 251 10 40 N/A N/A N/A N/A N/A

1/
√

X2 +Y 2 – – – 17 – 592 7 249 18 72 543 7 252 16 64
XY/

√
X2 +Y 2 182 4 285 10 35 206 7 262 10 38 293 7 262 11 42

WaveRings 341 4 243 12 49 474 14 262 13 50 489 14 256 13 51
Sombrero 221 4 243 10 41 281 14 245 11 45 296 14 245 11 45
Gaussian – – – 17 – 639 14 252 17 67 N/A N/A N/A N/A N/A√

X2 +Y 2 147 4 285 8 28 195 7 262 10 38 256 7 253 11 43
3√X3 +Y 3 193 4 285 10 35 201 13 272 10 37 242 12 244 10 41

–: NFGs cannot be mapped into the FPGA due to insufficient memory blocks.
#ALUTs: Number of ALUTs. #DSPs: Number of 9-bit × 9-bit DSP units. Freq. : Operating frequency. #stages : Number of pipeline stages.

Table 4. FPGA implementation of various NFGs for
XY/

√
X2 +Y 2.

FPGA device: Altera Stratix III (EP3SL340F1517C4)
Logic synthesis tool: Synplify Pro Ver. 8.8

Memory #ALUTs #DSPs Freq. #stages Delay
NFGs [bits] [MHz] [nsec.]

12-bit accuracy
One-variable 269,136 273 16 195 14 72

Tangent 369,189 182 4 285 10 35
Bilinear 293,330 206 7 262 10 38

Symmetric 153,176 293 7 262 11 42

technique has some speed penalty. However, it is reason-
able. To show this, we designed XY/

√
X2 +Y2 using one-

variable NFG for 1/
√

X , two squaring circuits, an adder, and
two multipliers. The one-variable NFG was realized by the
method shown in [8], which is based on linear approxima-
tion and non-uniform segment lengths. Table 4 compares
the results with our NFGs.

Our NFGs require fewer ALUTs and DSPs than the one-
variable implementation, and have much shorter delay. Es-
pecially, the NFG designed by the symmetric method re-
quires less memory and shorter delay than the one-variable
NFG. This shows that the speed penalty of our methods is
small.

6. CONCLUDING REMARKS

We have proposed a design method and a programmable
architecture for two-variable numerical function generators
using the bilinear interpolation. To realize a two-variable
function in hardware, we partition the given domain of the
function into segments, and approximate the given function
using the bilinear interpolation in each segment. In this pa-
per, we also presented a design method and an architecture
for two-variable symmetric functions. Experimental results
show that the proposed method can significantly reduce the
memory size needed for two-variable functions with small
speed penalty.
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