
On the Numbers of Variables to Represent
Multi-Valued Incompletely Specified Functions

Tsutomu Sasao
Department of Computer Science and Electronics,

Kyushu Institute of Technology,
Iizuka 820-8502, Japan

x1

x4

x2

x3

01

11

0

0

Fig. 1.1. Four-variable incompletely specified logic function.

Abstract—In an incompletely specified function f , don’t care
values can be chosen to minimize the number of variables to
represent f . We consider incompletely specified functions f :
P n → Q, where P = {0, 1, . . . , p − 1}, Q = {0, 1, . . . , q − 1},
u combinations are mapped to i (i = 0, 1, . . . , q − 1), uq = k,
and other combinations are mapped to don’t cares. We show that
most functions can be represented with 2�logp(k + 1)� variables
or less. Experimental results are shown to support this.

I. INTRODUCTION

For completely specified logic functions, logic minimization
is a process of reducing the number of products to represent the
given function. However, for incompletely specified functions
(i.e., functions with don’t cares), at least two problems exist
[5]: The first is to reduce the number of the products to
represent the function, and the second is to reduce the number
of variables. The first problem is useful for sum-of-products
expression (SOP)-based realizations [2], while the second
problem is useful for memory-based realizations.

Example 1.1: Consider the four-variable function shown in
Fig. 1.1, where the blank cells denote don’t cares. The SOP
with the minimum number of products is F1 = x1x4 ∨ x2x̄3,
while the SOP with the minimum number of variables is F2 =
x1x2∨x1x4∨x2x4. Note that F1 has two products and depends
on four variables, while F2 has three products and depends
on only three variables. x3 is a non-essential variable, since
F2 does not include it.
In this paper, we consider the minimization of the number
of variables. Especially, we are interested in the number
of variables to represent logic functions whose values are
specified for k combinations, where k is small.
Due to the space limitation, all the proofs are omitted.

II. DEFINITIONS AND BASIC PROPERTIES

Definition 2.1: A multi-valued incompletely specified
logic function f is a mapping D → Q, where D ⊂ Pn,
P = {0, 1, . . . , p − 1}, and Q = {0, 1, . . . , q − 1}.

Definition 2.2: f depends on xi if there exists a pair of
vectors

�a = (a1, a2, . . . , ai, . . . , an) and
�b = (a1, a2, . . . , bi, . . . , an),

such that both f(�a) and f(�b) are specified, and f(�a) �= f(�b).
If f depends on xi, then xi is essential in f , and xi must
appear in every expression for f .

Definition 2.3: Two functions f and g are compatible when
the following condition holds: For any �a ∈ Pn, if both f(�a)
and g(�a) are specified, then f(�a) = g(�a).

Lemma 2.1: Let fi = f(|x = i) for i = 0, 1, . . . p − 1.
Then, x is non-essential in f iff fi and fj are compatible for
all the pair (i, j).
If x is non-essential in f , then f can be represented by an
expression without x.

Example 2.1: Consider the function f in Fig. 1.1. It is easy
to verify that x1, x2, and x4 are essential. However, x3 is non-
essential. In fact, f is represented as

f = x1x2 ∨ x2x4 ∨ x1x4.

Essential variables must appear in every expression for f ,
while non-essential variables may appear in some expressions
and not in others. Algorithms to represent a given function by
using the minimum number of variables have been considered
[1], [3], [4], [5].

III. ANALYSIS FOR TWO-VALUED OUTPUT FUNCTIONS

In this section, we derive the number of variables to repre-
sent p-valued input two-valued output incompletely specified
functions. In the analysis that follows, we consider a set of
functions (e.g., all incompletely specified functions) restricted
by conditions (e.g. the number of care values is k = 2u).

Definition 3.1: A set of functions is uniformly distributed,
if the probability of occurrence of any function is the same as
any other function.

For example, the set of two-valued input two-valued output
4-variable incompletely specified functions with 1 care value



consists of 32 members, 16 having a single 1 and 16 having
a single 0. If the functions are uniformly distributed, the
probability of the occurrence of any one of them is 1

32 .
Theorem 3.1: Consider a set of uniformly distributed p-

valued n-variable input two-valued output incompletely spec-
ified function, where u combinations are mapped to 0, u
combinations mapped to 1, and the other pn − 2u combi-
nations are mapped to don’t cares. Let η be the probabil-
ity that f(x1, x2, . . . , xn) can be represented by using only
x1, x2, . . . , xt−1, and xt, where t < n. Then, η > (1 − α̃)u,
where α̃ = u

pt .
Theorem 3.1 considers the probability for one partition:

X1 = (x1, x2, . . . , xt) and X2 = (xt+1, xt+2, . . . , xn). How-
ever, in practice, we can select a minimum set of variables to
represent the function. The following theorem considers such
case:

Theorem 3.2: Consider a set of uniformly distributed in-
completely specified function, where u combinations are
mapped to 0, u combinations mapped to 1, and the other
pn − 2u combinations are mapped to don’t cares. Let PR
be the probability that f(x1, x2, . . . , xn) can be represented
by using only t variables. Then, PR = 1 − σ(n

t), where
σ = 1 − η, and η is the probability that f(x1, x2, . . . , xn)
can be represented by using only x1, x2, . . . , xt−1, and xt.

From this, we have the following:
Conjecture 3.1: Consider a set of uniformly distributed

functions of n variables, where u combinations are mapped
to 0, u combinations are mapped to 1, and the other pn − 2u
combinations are mapped to don’t cares. If

t > 2 logp u − logp 4,

then more than 95% of the functions can be represented with
t variables.

IV. ANALYSIS FOR MULTIPLE-VALUED INPUT INDEX

GENERATION FUNCTIONS

In practical applications, many functions take multiple val-
ues. Here, we consider the class of index generation functions,
which are special class of multiple-valued output functions.
Such functions have wide applications in pattern matching in
the internet [8], [9], [10].

Definition 4.1: Consider a set of k different vectors with n
components. These vectors are registered vectors. For each
registered vector, assign a unique integer from 1 to k. A regis-
tered vector table shows the index of each registered vector.
An index generation function produces the corresponding
index if the input matches a registered vector, and produces 0
otherwise. k is the weight of the index generation function.

In this paper, we assume that k is much smaller than pn,
the total number of input combinations.

A. Number of Variables to Represent Index Generation Func-
tions

In this part, we derive the number of variables to represent
an incompletely specified index generation function with k
registered vectors. The basic idea is as follows: a function

TABLE 4.1
REGISTERED VECTOR TABLE.

x1 x2 x3 x4 x5 f
0 0 1 0 0 1
0 1 0 0 1 2
0 1 1 1 0 3
1 0 0 1 1 4
1 0 0 1 1 5
1 1 1 1 0 6

TABLE 4.2
DECOMPOSITION CHART FOR f(X1, X2).

0 0 0 0 1 1 1 1 x3

0 0 1 1 0 0 1 1 x2

0 1 0 1 0 1 0 1 x1

0 0 1
0 1 2 5
1 0 3 6
1 1 4
x5 x4

f(X1,X2) is represented by a decomposition chart, where X1

labels the columns and X2 labels the rows. If each column has
at most one care element, then the function can be represented
by using only variables in X1. The next example illustrates
this.

Example 4.1: Table 4.1 shows a registered vector table
consisting of 6 vectors. When no entry matches the input
vector, the function produces 0. Consider the decomposition
chart shown in Table 4.2. In Table 4.2, x1, x2, and x3 specify
the columns, and x4 and x5 specify the rows, and blank
elements denote don’t cares. Note that in Table 4.2, each
column has at most one care element. Thus, the function can
be represented by only the column variables: x1,x2, and x3.
From here, we obtain the probability of such a condition by
a statistical analysis.

Theorem 4.1: Consider a set of uniformly distributed p-
valued input incompletely specified index generation functions
f(x1, x2, . . . , xn) with weight k, where p ≤ k < pn−2.
Let η(k) be the probability that f can be represented with
x1, x2, . . . , and xt, where t < n. Then, η(k) � exp(− k2

2pt ).
The above theorem shows the case when the input variables

are removed without considering the property of the function.
In practice, we can remove the maximum number of non-
essential variables by an optimization program.

Theorem 4.2: Consider a set of uniformly distributed
incompletely specified index generation functions
f(x1, x2, . . . , xn) with weight k, where p ≤ k < pn−2.
Let PR be the probability that f can be represented with t

variables, then PR = 1 − (1 − η(k))(
n
t), where η(k) is the

probability that f can be represented with x1, x2, . . . , and xt.
From this, we have the following:

Conjecture 4.1: Consider a set of uniformly distributed
incompletely specified p-valued input n-variable index gen-
eration functions with weight k. If

t ≥ 2 logp k − logp 4.158,

then more than 95% of the functions can be represented with
t variables.



Note that there exist functions that require all the variables
as shown below. However, the fraction of such functions
approaches to zero as n increase.

Example 4.2: Consider the n-variable incompletely speci-
fied index generation function f with weight k = n + 1 and
p = 2:

f(1, 0, 0, . . . , 0, 0) = 1
f(0, 1, 0, . . . , 0, 0) = 2
f(0, 0, 1, . . . , 0, 0) = 3

...
...

f(0, 0, 0, . . . , 1, 0) = n − 1
f(0, 0, 0, . . . , 0, 1) = n

f(0, 0, 0, . . . , 0, 0) = n + 1
f(a1, a2, a3, . . . , an−1, an) = d (for other combinations).

In this function, all the variables are essential, and no variable
can be removed.

Theorem 4.3: To represent an incompletely specified index
generation function with weight k, at least 
logp(k + 1)�
variables are necessary.

V. EXPERIMENTAL RESULTS

A. Random Single-Output Functions

For different n and p, we randomly generated 100 functions,
where u combinations are mapped to 0, u combinations are
mapped to 1, and the remaining pn − 2u combinations are
mapped to don’t cares. We minimized the number of variables
by an exact optimization algorithm [7]. In Table 5.1, the
columns headed with Exp show average numbers of variables
to represent p-valued input two-valued output functions, where
the set of variables are selected by the optimization algo-
rithm. The values are the average of 100 randomly generated
functions. The columns headed by Conj show the numbers of
variables to represent incompletely specified functions given
by Conjecture 3.1. For example, when p = 2 and n = 20, func-
tions whose 31 minterms are mapped to zeros, 31 minterms
are mapped to ones, and the other minterms are mapped to
don’t cares, require, on the average, 6.98 variables to represent
the functions. On the other hand, Conjecture 3.1 shows that 8
variables are sufficient. The numbers with * marks show that
the bounds were greater than n.

B. Random Index Generation Functions

We generated uniformly distributed index generation func-
tions. Table 5.2 shows the average numbers of variables to rep-
resent p-valued input n-variables index generation functions
with k registered vectors. For the other pn − k combinations,
the outputs are set to don’t cares. The columns headed with
Exp show that the average numbers of variables to repre-
sent the functions. The columns headed with Conj show the
number of variables to represent incompletely specified index
generation functions with weight k given by Conjecture 4.1.
For example, when k = 31 and p = 2, to represent a

TABLE 5.1
AVERAGE NUMBERS OF VARIABLES TO REPRESENT SINGLE-OUTPUT

LOGIC FUNCTIONS WITH u 1’S AND u 0’S.

p = 2 p = 3 p = 4
n = 20 n = 13 n = 10

u Exp Conj Exp Conj Exp Conj
15 4.98 6 3.88 3.79 3.11 3
31 6.98 8 4.99 5.05 4.05 4
63 8.98 10 6.02 6.31 5.04 5

127 10.98 12 7.50 7.57 6.06 6
255 12.99 14 8.94 8.83 7.21 8
511 15.09 16 10.03 10.10 8.39 9

1023 17.50 18 11.70 *11.36 9.57 10
2047 19.70 20 12.97 *12.62 10.00 *10
4095 20.00 *20 13.00 *13* 10.00 *10

TABLE 5.2
AVERAGE NUMBER OF VARIABLES TO REPRESENT INCOMPLETELY

SPECIFIED INDEX GENERATION FUNCTION.

p = 2 p = 3 p = 4
n = 20 n = 13 n = 10

k Exp Conj Exp Conj Exp Conj
15 4.92 6 3.22 3.75 3.00 3
31 6.09 8 4.53 5.01 3.97 4
63 8.00 10 5.79 6.23 4.94 5

127 10.00 12 7.00 7.53 5.97 6
255 12.00 14 8.02 8.80 6.97 7
511 14.06 16 9.50 10.06 7.94 8

1023 16.25 18 10.97 11.32 9.05 9
2047 18.71 20 12.37 12.58 9.98 10
4095 19.99 *20 13.00 *13 10.00 *10

uniformly distributed function, experimental results show that,
on the average, 6.09 variables are necessary to represent the
functions. On the other hand, Conjecture 4.1 shows that 8
variables are sufficient. We performed additional experiments
for p = 3, 5, and 7 and confirmed that the Conjecture.

VI. APPLICATIONS

A. Two-Valued Case

A terminal access controller (TAC) for a local area network
checks whether the requested terminal has permission to
access Web, e-mail, FTP, Telnet, or not. Each terminal has its
unique MAC address represented by 48 bits. Note that the table
for the terminal access controller must be updated frequently.

Example 6.1: Let the number of terminals to be connected
to a TAC be at most 255. To implement the TAC, we use
an IGU and a memory. The number of inputs for the index
generation unit (IGU) is 48 and the number of outputs is 8.
Fig. 6.1 shows the IGU. When the number of registered vectors
is 255, we need about 12 variables to distinguish these vectors.
Let t = 15 be the number of inputs, and m = 8 be the number
of outputs of main memory. The size of the main memory is
215 × 8 = 218 = 256 × 210. The size of the AUX memory
is 28 × (48 − 15) = 256 × 33 = 8448. Note that, in many
cases, only 12 inputs are necessary to distinguish the MAC
addresses, but 15 inputs are used to cover more addresses.

B. Four-Valued Case

Deoxyribonucleic acid (DNA) contains the genetic instruc-
tions used in the development and functioning of all known



Fig. 6.1. Index generation unit.

TABLE 6.1
INDEX GENERATION FUNCTION

x1 x2 x3 x4 x5 x6 x7 x8 f
A A G A G C T A 1
A A G C A C G C 2
G A A G A T C A 3
C T G G A G G G 4
T A G G G A T A 5
T A T G C C A G 6
T G A C C G C G 7

living organisms and some viruses. The four bases found in
DNA are adenine (abbreviated A), cytosine (C), guanine (G)
and thymine (T). To represent DNA, we use 4-valued logic.

Example 6.2: Consider the circuit to detect DNA patterns
shown in Table 6.1. Since each pattern consists of 8 characters,
a single-memory realization requires a memory with 2 × 8 =
16 inputs. Since, it has three outputs, the memory size is 216×
3 = 192 × 210, or 192 kilobits.

However, these patterns can be distinguished by using only
two characters: x4 and x7. Fig. 6.2 shows the circuit to detect
the DNA patterns.
When the input pattern is (x1, x2, x3, x4, x5, x6, x7, x8) =
(G,A,A,G,A, T,C,A), the main memory produces 3, since
the input to the main memory is (x4, x7) = (G,C). Thus,
the possible index is 3. Then, the AUX memory produces
(x1, x2, x3, x5, x6, x8) = (G,A,A,A, T,A). The comparator
verifies that the outputs of the AUX memory is the same as
the input pattern (x1, x2, x3, x5, x6, x8). This means that the
input vector is registered. Finally, the AND gate produces the
index 3.
When the input pattern is (x1, x2, x3, x4, x5, x6, x7, x8) =
(A,A,A,G,A, T,C,A). Although this pattern is not in Ta-
ble 6.1, the main memory produces 3, as a possible in-
dex. However, the input pattern (x1, x2, x3, x5, x6, x8) =
(A,A,A,A, T,A) is different from the output of the AUX
memory. So, the comparator produces 0, and the AND gate
produces 0, that indicates the input pattern is not registered. In
Fig. 6.2, the total amount of memory is only 42×3+8×6×2 =
144 bits.

VII. CONCLUSIONS

In this paper, we have derived the number of variables to
represent incompletely specified p-valued two-valued output
functions and index generation functions with weight k. Such

Fig. 6.2. Index generation unit for DNA matching.

functions can be represented by at most 2
logp(k + 1)�
variables, in most cases. These results show that reduction
of the number of variables is quite effective for incompletely
specified functions.

ACKNOWLEDGMENTS

This work was supported in part by the Regional Innovation
Cluster Program (Global Type, Second Stage).

REFERENCES

[1] F. M. Brown, Boolean Reasoning: The logic of Boolean Equa-
tions, Kluwer Academic Publishers, Boston, 1990.

[2] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and
A. L. Sangiovanni-Vincentelli, Logic Minimization Algorithms
for VLSI Synthesis, Boston, MA. Kluwer Academic Publishers,
1984.

[3] M. Fujita and Y. Matsunaga, “Multi-level logic minimization
based on minimal support and its application to the minimization
of look-up table type FPGAs,” ICCAD-91, pp. 560-563.

[4] C. Halatsis and N. Gaitanis, “Irredundant normal forms and
minimal dependence sets of a Boolean functions,” IEEE Trans.
on Computers, Vol. C-27, No. 11, pp. 1064-1068, Nov. 1978.

[5] Y. Kambayashi, “Logic design of programmable logic arrays,”
IEEE Trans. on Computers, Vol. C-28, No. 9, pp. 609-617, Sept.
l979.

[6] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Aca-
demic Publishers, 1999.

[7] T. Sasao, “On the number of dependent variables for incom-
pletely specified multiple-valued functions,” 30th International
Symposium on Multiple-Valued Logic, pp. 91-97, Portland, Ore-
gon, U.S.A., May 23-25, 2000.

[8] T. Sasao, “Design methods for multiple-valued input ad-
dress generators,”(invited paper) International Symposium on
Multiple-Valued Logic (ISMVL-2006), Singapore, May 2006.

[9] T. Sasao and M. Matsuura, “An implementation of an address
generator using hash memories,” 10th EUROMICRO Conference
on Digital System Design, Architectures, Methods and Tools
(DSD-2007), Aug. 27 - 31, 2007, Lubeck, Germany, pp.69-76.

[10] T. Sasao, “On the number of variables to represent sparse logic
functions,” ICCAD-2008, San Jose, California, USA, Nov.10-13,
2008, pp. 45-51.


