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Abstract—A branching program machine (BM) is a special
purpose processor that uses only two kinds of instructions:
Branch and output instructions. Thus, the architecture for the
BM is much simpler than that for a general purpose proces-
sor (MPU). Since the BM uses the dedicated instructions for a
special purpose application, it is faster than the MPU. This paper
presents a packet classifier using a parallel branching program
machine (PBM). To reduce computation time and code size, first,
a set of rules for the packet classifier is partitioned into groups.
Then, they are evaluated by the PBM in parallel. Also, this paper
shows a method to estimate the number of necessary BMs to
realize the packet classifier. The PBM32 consisting of 32 BMs has
been implemented on an FPGA, and compared with the Intel’s
Core2Duo@1.2GHz. The PBM32 is 8.1-11.1 times faster than the
Core2Duo, and the PBM32 requires only 0.2-10.3 percent of the
memory for the Core2Duo.

I. INTRODUCTION

A packet classification [19] is a key technology in the
router and the firewall. A packet header includes a protocol
number, a source address, a destination address, and a port
number. The packet classifier performs a predefined action
for a corresponding rule. Applications for the packet classifier
include a firewall (FW), an access control list (ACL), and an
IP chain for an IP masquerading technique.

Different uses require systems with different performance.
Thus, different architecture should be used. In the data cen-
ters and the ISPs (Internet Service Providers), the required
throughput is more than tens giga bits per second. Thus,
CAMs, FPGAs, or ASICs are used. These devices dissipate
much power or require a high development cost. On the other
hand, in low-end users including SOHO (small office and
home office), the embedded processors or the general purpose
processors are used. In this research, we consider the packet
filter for the low-end users. So, we compare the performance
with a general purpose processor or MPU. The throughput for
the state-of-the-art packet classifier using the MPU is at most
hundreds mega bits per second [4], so it cannot keep up with
accelerated speed up of the Internet.

This paper shows a packet classifier using a parallel branch-
ing program machine (PBM) [12]. A branching program
machine (BM) is a special purpose processor that uses only
two instructions [2], [1], [21]. Thus, the BM has simpler
architecture than the MPU. Since the BM has the dedicated
branch instructions that are frequently used in the packet
classifier, it is faster than the MPU. To realize the packet
classifier by the PBM, first, a set of rules for the packet
classifier is partitioned into groups. Then, they are evaluated
by the PBM in parallel.

TABLE I
EXAMPLE OF THE PACKET CLASSIFICATION TABLE.

Input Output
SA DA SP DP PRT FLG Rule

1000 110* [0:1] [8:9] ICMP - 4
00** 1*** [3:8] [6:8] TCP 1111 3
010* 0010 [3:11] [7:14] UDP 0101 2
0*** 10** [8:9] [4:11] TCP - 1

- - [0:15] [0:15] - - 0

The rest of the paper is organized as follows: Section 2
defines the packet classifier; Section 3 introduces the PBM;
Section 4 shows the realization of the packet classifier using
the PBM; Section 5 compares the PBM with the Intel’s
Core2Duo; and Section 6 concludes the paper.

II. PRELIMINARY

A. Packet Classifier

A packet classification table consists of a set of rules.
Each rule has six input fields: Source address (SA), destination
address (DA), source port (SP), destination port (DP), protocol
number (PRT), and flag number (FLG)1. Also, it generates
a rule number (Rule). A field has entries. In this paper,
since we consider a realization of the packet classifier for the
Internet protocol version 4 (IPv4), SA and DA have 32 bits,
DP, SP, and FLG have 16 bits, and PRT has 8 bits. An entry
for SA and DA is specified by an IP address; that for SP and
DP is specified by a range of a port number; that for PRT is
specified by a protocol number; and that for FLG is specified
by a bit vector [18]. Thus, SA and DA are detected by an
LPM match; SP and DP are detected by a range match;
and PRT and FLG are detected by an exact match. A packet
classifier detects matched rules using the packet classification
table. When two or more rules match, it selects a rule having
the highest priority. In this paper, we assume that the rule
with the largest number has the highest priority. Note that,
any packet matches a default rule whose rule number is zero.
Obviously, the default rule has the lowest priority.

Example 2.1: Table I shows an example of the packet
classification table, where an asterisk ‘*’ in an entry matches
both 0 and 1, while a dash ‘-’ in a field matches any pattern.
Note that, each field has four bits, rather than the actual
number of bits to simplify the example.

Example 2.2: Consider the packet classification table
shown in Table I. The packet header with SA = 0000, DA =
1010, SP = 8, DP = 8, PRT = TCP, and FLG = 1111

1Practical packet classification tables have a 1 bit flow direction filed. Since
we used an open source packet generator ClassBench [20], we ignore it.



matches rule 3, rule 1, and the default rule. Since the rule 3
has the highest priority, the rule 3 is detected.

B. Representation of Entries by Interval Functions

An entry of a rule can be represented by an interval
function [16]. First, we define the interval function.

Definition 2.1: [16] Let xi ∈ {0, 1}, X = (x1, x2, . . . , xn),
and Y =

∑n
i=1 xi2i−1. An interval function is

IN(X : A, B) =
{

1 (A ≤ Y ≤ B)
0 (otherwise) (1)

where A and B are integers that satisfy 0 ≤ A ≤ B ≤ 2n−1.
Next, we represent any entry by the interval function.

Suppose that the packet header is represented by 6-tuple
(XSA, XDA, XSP , XDP , XPRT , XFLG). Since the entry for
SP and DP is represented by the range match, they can be
directly represented by interval functions. When A = B in
Expr. (1), it shows the exact match. Let b be the protocol
number. The entry for PRT is represented by

IN(XPRT : b, b). (2)

Similarly, any entry for FLG can be represented by an
interval function. Let xi ∈ {0, 1}, yi = ∗, v =
(x1, x2, . . . , xn, y1, y2, . . . , ym), and A =

∑n
i=1 xi2i−1. Any

entry for SA is represented by

IN(XSA : A2m, (A + 1)2m − 1). (3)

Similarly, any entry for DA can be represented by an interval
function.

As shown in Example 2.2, multiple rules may match in
a packet classification table. To distinguish them, we use a
vectorized packet classification function.

Definition 2.2: Let k be the number of fields, and r be the
number of rules. A vectorized packet classification function �F
is

�F =
r∨

i=1

�ei

k∧
j=1

IN(Xj : A(i,j), B(i,j)). (4)

Note that, �ei is an r-bit unit vector, where only i-th bit is one,
and the other bits are zeros.

Example 2.3: Table II represents entries in Table I using
Exprs. (1), (2), and (3). Note that, PRT is represented by
integers: TCP = 1, UDP = 2, and ICMP = 3. In Table II,
�ei denotes the unit vector corresponding to the rule number.

Example 2.4: By assigning entries shown in Table II to
Expr. (4), we have a vectorized packet classification function
�F , where k = 6 and r = 5. When a packet header has values
SA=0000, DA=1010, SP=8, DP=8, PRT=1, and FLG=1111,
we have �F = (0, 1, 0, 1). It means that rule 3, rule 1, and the
default rule are matched. .

TABLE III
AN EXAMPLE OF THE PRIORITY ENCODER FUNCTION.

input output
1*** 100
01** 011
001* 010
0001 001
0000 000

TABLE IV
PRIORITY ENCODER FUNCTION REPRESENTED BY INTERVAL FUNCTION

WITH NATURAL BINARY ORDERED NUMBER.

input output
IN(X:8,15) 100
IN(X:4,7) 011
IN(X:2,3) 010
IN(X:1,1) 001
IN(X:0,0) 000

C. Priority Encoder Function

A packet header may match multiple rules. To detect the rule
with the highest priority, we use a priority encoder function.
The priority encoder function for r rules generates a �log2r�-
bit binary number.

Example 2.5: When the vector �F = (0, 1, 0, 1) is applied
to the priority encoder function shown in Table III, we have
(0, 1, 1). This means that the rule 3 is detected.

The priority encoder function can be represented by the
interval function.

Example 2.6: Table IV shows an example of the priority
encoder function for r = 4.

By using the vectorized classification function and the
priority encoder function, we can realize the packet classifier
with the specified priority.

D. Number of Rules

The embedded packet classifier implemented by the general
purpose processor [4], [5] uses 100-300 rules [6]. To compare
the performance, we also assume that the number of rules is
200.

III. PARALLEL BRANCHING PROGRAM MACHINE[12]

The packet classifier is realized by a parallel branching
program machine (PBM). First, each field is converted to a
decision diagram. Then, these decision diagrams are evaluated
in parallel.

A. MTQDD

An arbitrary n-variable logic function can be represented by
a BDD (Binary Decision Diagram) [3]. An MTBDD (Multi-
Terminal Binary Decision Diagram) can evaluate many
outputs at a time. Evaluation of the MTBDD requires n table
look-ups. In this paper, we consider that the evaluation time
for the BDD is proportional to a longest path length (LPL).
Definitions and optimization techniques are shown in [9].

To further speed up the evaluation, an MDD (Multi-valued
Decision Diagram) [8] is used. In the MDD(q), q variables are
grouped to form a 2q-valued super variable. Note that a BDD
is equivalent to an MDD(1). When the function is represented
by an MDD(q), at most �n

q � table look-ups are necessary
to evaluate an input vector [7]. The evaluation time can be



TABLE II
PACKET CLASSIFICATION TABLE REPRESENTED BY INTERVAL FUNCTIONS.

SA DA SP DP PRT FLG Rule �ei

IN(XSA:8,8) IN(XDA:12,13) IN(XSP :0,1) IN(XDP :8,9) IN(XPRT :3,3) IN(XF LG:0,15) 4 1000
IN(XSA:0,3) IN(XDA:8,15) IN(XSP :3,8) IN(XDP :6,8) IN(XPRT :1,1) IN(XF LG:15,15) 3 0100
IN(XSA:4,5) IN(XDA:2,2) IN(XSP :3,11) IN(XDP :7,14) IN(XPRT :2,2) IN(XF LG:5,5) 2 0010
IN(XSA:0,7) IN(XDA:8,11) IN(XSP :8,9) IN(XDP :4,11) IN(XPRT :1,1) IN(XF LG:0,15) 1 0001
IN(XSA:0,15) IN(XDA:0,15) IN(XSP :0,15) IN(XDP :0,15) IN(XPRT :0,15) IN(XF LG:0,15) 0 0000
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Fig. 1. Example of MTBDD.
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Fig. 2. MTQDD derived from
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B_BRANCH (ADDR0,ADDR1),INDEX

Q_BRANCH (ADDR0,ADDR1,ADDR2),INDEX,SEL

DATASET  DATA,REG,ADDR

Fig. 3. Mnemonics and Internal Representations.

reduced by increasing q. However, a node for the MDD(q)
requires pointers proportional to 2q. For many benchmark
functions, total memory size for the MDD(2) achieves its
minimum [10]. Since MDD(2) has 4 branches, it is denoted by
a QDD (Quaternary Decision Diagram). The QDD machine
is known to be the best for the area-time complexity [11].

Example 3.7: Fig.1 shows an example of the MTBDD.
Fig. 2 shows the MTQDD that is derived from the MTBDD
in Fig. 1.

B. Instructions for the Branching Program Machine [17]

Three instructions are used to evaluate an MTQDD. A 2-
address binary branch instruction (B BRANCH) and a
3-address quaternary branch instruction (Q BRANCH)
evaluate a non-terminal node, while a dataset instruc-
tion (DATASET) evaluates a terminal node. Mnemonics and
their internal representations for B BRANCH, Q BRANCH
and DATASET are shown in Fig. 3.

B BRANCH performs a binary branch: If the value of
the variable specified by INDEX is equal to 0, then GOTO
ADDR0, else GOTO ADDR1. DATASET performs an out-
put operation and a jump operation. First, DATASET writes
DATA (16 bits) to a register specified by REG. Then, GOTO
ADDR. Q BRANCH jumps to one of four addresses: Three

xi
xi+1

PC+1  ADDR0  ADDR1 ADDR2

SEL=00
xi
xi+1

ADDR0  PC+1  ADDR1 ADDR2

SEL=01

xi
xi+1

ADDR0 ADDR1 PC+1 ADDR2

SEL=10
xi
xi+1

ADDR0 ADDR1 ADDR2 PC+1

SEL=11

00 01 10 11 00 01 10 11

00 01 10 11 00 01 10 11

Fig. 4. Four Different Q BRANCH Instructions

jump addresses are specified by ADDR0, ADDR1, and ADDR2,
while the remaining address is the next address (PC+1)
to the present one. Since it evaluates two variables at a
time, the total evaluation time is reduced up to a half of a
B BRANCH instruction. Also, it can reduce the total number
of instructions. We use four different Q BRANCH instructions
shown in Fig. 4. SEL in the Q BRANCH specifies one of
four combinations. Let i be the value of the variable specified
by INDEX. If (SEL=i), then jump to PC+1, otherwise jump
to ADDRi. In addition, unconditional jump instructions
are necessary to evaluate some QDDs. The next Example
illustrates this:

Example 3.8: The program in Fig. 8 evaluates the MTBDD
in Fig. 1. Consider the MTQDD shown in Fig. 2. Fig. 5
shows the MTQDD with address assignment for Q BRANCH
instructions, where SEL has the same meaning as Fig. 4. For
A6, B BRANCH instruction is used for an unconditional jump,
since the terminal node ‘10’ is already assigned to A3. Thus,
the program in Fig. 9 evaluates the MTQDD.

By changing the address and the SEL as shown in Fig. 6,
we can remove the unconditional jump. In this way, for
the 3-address quarternary branch, we can optimize the code.
The number of unconditional jumps can be minimized by an
optimization method shown in [17].

C. Branching Program Machine (BM)

Fig. 10 shows a branching program machine (BM). It
consists of the instruction memory that stores up to 256
words of 32 bits; the instruction decoder; the program
counter (PC); and the register file. In our implementation,
two clocks are used to execute each instruction of the BM.
Double-rank filp-flops [13] are used to implement the output
register. Fig. 7 shows the double-rank filp-flop, where L1 and
L2 are D-latches. The DATASET instruction sends the values
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L1 L2

MUX

select

S_Clock

Fig. 7. Double-Rank Flip-Flop.

A0: B_BRANCH (A1,A7),x0
A1: B_BRANCH (A2,A3),x1
A2: DATASET 01,0,A0
A3: B_BRANCH (A4,A5),x2
A4: DATASET 10,0,A0
A5: B_BRANCH (A4,A6),x3
A6: DATASET 00,0,A0
A7: B_BRANCH (A3,A8),x1
A8: B_BRANCH (A6,A5),x2

Fig. 8. Program Code for the MTBDD in Fig. 1.

A0: Q_BRANCH (A2,A2,A5),X0,00
A1: DATASET 01,0,A0
A2: Q_BRANCH (A3,A3,A4),X1,00
A3: DATASET 10,0,A0
A4: DATASET 00,0,A0
A5: Q_BRANCH (A4,A4,A4),X1,10
A6: B_BRANCH (A3,A3),--

Fig. 9. Program Code for the MTQDD in Fig. 5.

into L1 latches by using C Clock. When all the outputs and
state variables are evaluated, the values of L1 are sent to L2

latches by using S Clock.

D. 8 BM

Fig. 11 shows the architecture of the 8 BM consisting of
eight BMs. The output registers of BMs are connected to the
inputs of the following BMs through programmable routing
boxes. Also, each BM can operate independently.

A programmable routing box implements the bitwise AND
and the bitwise OR operation. It also implements constant
values: In the programmable routing boxes (highlighted with
gray in Fig. 11), constant 1s are generated to perform the
bitwise AND operation, while constant 0s are generated to
perform the bitwise OR operation. Since BMs are connected
each other by sharing a register, each BM can send the signal
to other BM by one clock within an 8 BM. Since the BM
uses two clocks to perform an instruction, the communication
delay can be neglected.

E. Parallel Branching Program Machine

Fig. 12 shows the architecture of the parallel branching
program machine (PBM) for the packet classifier. The
programmable interconnection connects four 8 BMs. The
external inputs (packet headers) are sent to the 8 BMs from
the network interface (PHY/MAC). Each 8 BM has external

Step 1

Step 2

Step 3

Set of Rules

Set of Groups

Set of Fields
SA DA SP DP PRT FLAGodd even evenodd

Fig. 13. Partition of Packet Classification Table.

outputs connecting to the programmable interconnection and
the system BUS. In addition, the host MPU is used to control
the whole system.

IV. REALIZATION OF PACKET CLASSIFIER USING PBM

A. Packet Classification Table Implemented by 8 BM

Since the packet classification table has many inputs and
outputs, a direct realization by a single MTQDD is infeasible.
Our strategy is as follows: First, we partition the set of rules
into several groups (Fig. 13, Step 1). Second, we partition
each group into six fields (Fig. 13, Step 2). Third, we convert
them to the MTQDDs, and load the data to the 8 BM in the
PBM (Fig. 13, Step 3). Finally, we use the PBM to evaluate
them in parallel.

Theorem 4.1: Consider a vectorized packet classification
function �F . Let k be the number of fields, and r be the number
of rules, then we have the relation:

�F =
r∨

i=1

�ei

k∧
j=1

IN(Xj : A(i,j), B(i,j))

=
k∧

j=1

r∨
i=1

�eiIN(Xj : A(i,j), B(i,j))

(Proof) Let fi,j = IN(Xj : A(i,j), B(i,j)). Then, vectorized
packet classification function �F can be represented by the
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product-of-sums (POS):

�F =
k∧

j=1

r∨
i=1

�eiIN(Xj : A(i,j), B(i,j))

= (�e1f1,1 ∨ �e2f2,1 ∨ · · · ∨ �erfr,1)
∧(�e1f1,2 ∨ �e2f2,2 ∨ · · · ∨ �erfr,2)
∧ · · · ∧ (�e1f1,k ∨ �e2f2,k ∨ · · · ∨ �erfr,k). (5)

By converting the above POS, we have the sum-of-
products (SOP) whose product consists of forms fai,bj , where
ai ∈ {1, 2, . . . , r}, and bj ∈ {1, 2, . . . , k}. As shown in
Definition 2.2, �ei is the unit vector whose i-th element is only
one and the other elements are zero. Thus, only the products
having the form �eαfα,1∧�eαfα,2∧· · · ∧�eαfα,k remain, where
α ∈ {1, 2, . . . , r}. Therefore, Expr. (5) can be represented by

�F = �e1(f1,1 ∧ f1,2 ∧ · · · ∧ f1,k)
∨�e2(f2,1 ∧ f2,2 ∧ · · · ∧ f2,k)
∨ · · · ∨ �er(fr,1 ∧ fr,2 ∧ · · · ∧ fr,k)

=
r∨

i=1

�ei

k∧
j=1

IN(Xj : A(i,j), B(i,j)).

�

From the interval functions shown in Table II, by Theo-
rem 4.1, Expr. (4) can be converted to

�F =
r∨

i=1

�eiIN(XSA : ASAi , BSAi)

·
r∨

i=1

�eiIN(XDA : ADAi , BDAi)

·
r∨

i=1

�eiIN(XSP : ASPi , BSPi)

·
r∨

i=1

�eiIN(XDP : ADPi , BDPi)

·
r∨

i=1

�eiIN(XPRT : APRTi , BPRTi)

·
r∨

i=1

�eiIN(XFLG : AFLGi , BFLGi). (6)

Note that, in Expr. (6), each sum corresponds to a field in the
packet classification table. A function representing a sum is a
vectorized field function. Note that, Expr. (6) is the product of
six terms, while the 8 BM consists of eight BMs. To improve
the usability of the 8 BM, we decompose each of SA field
and DA field into two. Let XSAE be the even bits for SA;
XSAO be the odd bits for SA; XDAE be the even bits for
DA; and XDAO be the odd bits for DA. Expr. (6) is converted
to the product of eight vectorized field functions as follows:

�F =
r∨

i=1

�eiIN(XSAE : ASAEi , BSAEi)

·
r∨

i=1

�eiIN(XSAO : ASAOi , BSAOi)

·
r∨

i=1

�eiIN(XDAE : ADAEi , BDAEi)

·
r∨

i=1

�eiIN(XDAO : ADAOi , BDAOi)

·
r∨

i=1

�eiIN(XSP : ASPi , BSPi)

·
r∨

i=1

�eiIN(XDP : ADPi , BDPi)

·
r∨

i=1

�eiIN(XPRT : APRTi , BPRTi)

·
r∨

i=1

�eiIN(XFLG : AFLGi , BFLGi), (7)

where ASAEi , BSAEi , ASAOi , BSAOi , ADAEi , BDAEi ,
ADAOi , and BDAOi are integers. Note that, Expr. (7) is
the product of eight sums. Thus, we can efficiently realize
Expr. (7) by the 8 BM and the bitwise-AND gate. The
programmable routing box shown in Fig. 11 realizes the
bitwise-AND gate.
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Fig. 14. Realization of the Packet Classifier Using PBM.

B. Priority Encoder Function Implemented by BM

As shown in Section II-D, we assume that the number
of rules is 200. When the number of rules is more than a
few hundreds, the number of inputs for the priority encoder
functions is too large, so it is too slow to evaluate it by the
BM. To realize the priority encoder function compactly, we
assume the following conditions:

1. Any pair of rules in the same group are disjoint2.
2. Any pair of rules that belong to different groups may

intersect.
Since rules are mutually disjoint in a group, the 8 BM can

realize it without the priority encoder. On the other hand,
since rules in different groups may intersect, an additional BM
for the priority encoder function is attached to the outputs of
8 BMs. Since the number of groups is small, the number of
inputs for the BM realizing the priority encoder is also small.
Thus, the priority encoder function implemented by the BM
is fast enough.

C. Packet Classifier Implemented by PBM

Fig. 14 shows the realization of the packet classifier using
the PBM8m, where the rules are partitioned into m groups.
An 8 BM in the PBM8m realizes a group. The programmable
interconnection connects the m 8 BMs, and a BM realizes the
priority encoder (In our implementation, m = 4).

V. ANALYSIS OF VECTORIZED FIELD FUNCTIONS

By analyzing the vectorized field function, we can estimate
the number of steps for the BM, and the size of hardware.
First, we define the region for a vectored field function.

Definition 5.3: Let �H(X) =
∨r

i=1 �eiIN(X : Ai, Bi) be a
vectorized field function, where 0 ≤ X ≤ 2n − 1, and r be
the number of rules (in other words, the number of interval
functions). For each value of �H , we assign a region, which is
an interval or a set of intervals in [0, 2n − 1].

2Our tool converts the set of rules into disjoint ones to satisfy this condition.
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Example 5.9: Fig. 15 (a) shows the relation of inter-
vals and regions for source address (SA). �H takes five
different values {0101, 0011, 0001, 1000, 0000}, and corre-
sponding regions are [0, 3], [4, 5], [6, 7], [8, 8], and [9, 15],
respectively. Fig. 15 (b) shows the relation of intervals
and regions for destination address (DA). In this case, the
number of regions is eight, since �H takes eight values
{0000, 0001, 0101, 0111, 1111, 1011, 0011, 0010}. Note that,
the region for {0000} consists of two disjoint intervals [0, 3]
and [15, 15].

Example 5.9 shows that, when two interval functions have a
common element and also none of the intervals are contained
by the other, three new regions are produced. For example,
for DA shown in Fig. 15 (b), interval functions IN(XDA:6,8)
and IN(XDA:8,9) produce three new regions ([6:7], [8:8],
and [9:9]). In contrast, for two interval functions, when one
contains the other or does not intersect, only two regions
are produced. For example, for SA shown in Fig. 15 (a),
interval functions IN(XDA:0,3) and IN(XDA:0,7) produce two
regions ([0:3] and [4:7]). From above observations, we have
the upper bound of the number of regions for the vectorized
field function.

Theorem 5.2: A vectorized field function defined by s in-
terval functions has at most 2s regions.

(Proof) We prove it by mathematical induction. When s =
1, the number of regions is at most two. Assume that the
number of regions for s interval functions is t ≤ 2s. When we
add an additional interval function, at most two new regions
increase. Thus, for (s+1) interval functions, the total number
of regions is at most t + 2 ≤ 2s + 2 = 2(s + 1). �

Example 5.10: The DA shown in Fig. 15 (b) has s = 4
interval functions. The number of regions is eight.

Theorem 5.3: [15] The vectorized field function for
FLG (PRT) with s intervals has at most s + 1 regions.

Theorem 5.4: [15] The vectorized field function for the
address field has s intervals has at most s + 1 regions.

To derive the number of nodes for the MTBDD, first, we
introduce the decomposition chart.

Definition 5.4: Consider an integer logic function F (X) :
Bn → {0, 1, . . . , r}, where B = {0, 1} and X =
(x0, x1, . . . , xn−1). Let X = (XB, XF ) be a partition of X .
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Fig. 16. Relation Between the Decomposition Chart and MTBDD.

Each column is labeled by bound variables XB , while each
row is labeled free variables XF . The corresponding chart
entry denotes the function value. The number of different
column patterns in the decomposition chart is the column
multiplicity. A column that has two or more different entries
is a non-constant column, while a column that has the same
entries is a constant column.

Example 5.11: Fig. 16 (a) shows the decomposition chart
for the vectorized field function of the DA shown in
Fig. 15 (b), where XB = (x3, x2, x1), and XF = (x0).
Note that, the function value is written in decimal number
in Fig. 16 (a), while in Fig. 15 (b), that is written in binary
number. Columns for {011, 100, 111} are the non-constant
columns.

The number of nodes for an index of a quasi-reduced
MTBDD corresponds to a column multiplicity for a decom-
position chart. Also, the column multiplicity is related to the
number of regions for the vectorized field function. A non-
constant column in a decomposition chart is represented by a
non-terminal node in the MTBDD. For example, in Fig. 16,
non-constant columns (α, β, and γ) correspond to nodes (α,
β, and γ), respectively. In contrast, the constant columns
correspond to the terminal nodes. Thus, the number of the
different non-constant columns equals to the number of nodes
for the corresponding index of the quasi-reduced MTBDD.

Lemma 5.1: [14] The number of different column patterns
of the vectorized field function f with t regions is at most t.

From the above discussion, we have the upper bound of the
number of nodes for the MTBDD that realizes the vectorized
field function for r rules.

Theorem 5.5: In an arbitrary index for the
MTBDD (MTQDD) representing the vectorized field
function for r rules, the number of non-terminal nodes is at
most 2r.

(Proof) We prove the case for MTBDDs. The proof for
the case of MTQDDs is similar. Consider a vectorized field
function consisting of r interval functions. From Theorem 5.2,
the number of regions is at most 2r. From Lemma 5.1, the
number of non-constant column patterns is at most 2r. Since
a non-constant column pattern in the decomposition chart
corresponds to a non-terminal node in the QRMTBDD, we
have the theorem. �

Theorem 5.6: Let n be the number of primary inputs, and
r be the number of rules for the packet classification table.
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Fig. 17. Explanation of Theorem 5.6.

Then, the number of nodes for the MTQDD representing the
vectorized field function is at most

�2p − 1
3

� + �n − p

2
�2r + (r + 1),

where p is an integer satisfying 2p ≤ 2r.
(Proof) We partition the nodes of the MTBDD into three

parts, and enumerate the number of nodes, separately. We
assume that the root node has the index n, while the terminal
node has the index zero. In the upper part, for the indices from
n to n − p + 1, consider the complete binary tree. Then, the
number of nodes is 2p. The node for the MTQDD includes
3 node or one node of the MTBDD (Fig. 17(a)). Thus, the
number of the MTQDD nodes in the upper part is at most

�2p − 1
3

�. (8)

As for the middle part, from Theorem 5.5, for each index,
the number of non-terminal nodes is at most 2r (Fig. 17(b)).
Since a node for the MTQDD corresponds to two indices of
the MTBDD, for the middle part, the number of nodes for the
MTQDD is at most

�n − p

2
�2r. (9)

In the bottom part, from Fig. 17(c), the number of terminal
nodes is at most

r + 1. (10)

Therefore, from Exprs. (8), (9), and (10), we have the theorem.
�

From Theorem 5.6, we can derive the upper bound on the
number of nodes for the MTQDD for vectorized field function,
and also the number of BMs to represent the given packet
classification function.

VI. EXPERIMENTAL RESULTS

A. Implementation of PBM32

We implemented the PBM32 on an Altera’s FPGA. To
control the PBM32, we attached the embedded processor
Nios II/f. We used Altera’s Cyclone III embedded development



TABLE V
COMPARISON OF PBM32 WITH INTEL’S CORE2DUO.

PBM32 Core2Duo Ratio
Rule Time Mem Time Mem (C2D/PBM)

[nsec] [KB] [nsec] [KB] Time Mem
acl1 98 8.9 945 86.6 9.6 9.7
acl2 98 7.8 945 127.7 9.6 16.3
acl3 98 10.1 801 143.9 8.1 14.2
acl4 98 10.0 801 138.3 8.1 13.7
acl5 98 7.9 945 107.2 9.6 13.5
fw1 98 3.0 1089 624.6 11.1 203.7
fw2 98 4.5 801 261.8 8.1 57.6
fw3 98 1.8 1089 708.6 11.1 379.5
fw4 98 2.6 945 538.5 9.6 202.7
fw5 98 2.5 1089 1104.1 11.1 436.2
ipc1 98 12.9 1089 142.6 11.1 11.0
ipc2 98 1.4 1089 67.5 11.1 46.6

kit utilizing Cyclone III: EP3CLS200F780C7N (198,464 LEs,
891 M9Ks), and used Quartus II (v.9.1) synthesis tool. In our
implementation, the PBM32 uses 23,105 LEs and 32 M9Ks.
Note that, it does not count the hardware resource for the
Nios II/f. The maximum clock frequency was 183.42 MHz.

B. Comparison with Intel’s Core2Duo

We compared the execution time and code size for the
PBM32 with the Intel’s general-purpose processor Core2Duo.
We used an Intel’s Core2Duo U7600 (1.2GHz, Cache L1 data
32KB, L1 instruction 32KB, and L2 2MB), and OS: Windows
XP SP2. To implement a packet filter, first, we generated
a packet filter consisting of 200 rules by using a command
’db generator.exe -bc rulefile 200 2 -0.5 0.1 packetfilterfile’ of
ClassBench. We loaded the program code for generated QDDs
into the PBM32. In the Core2Duo, the code for the BDD is
simpler and faster than that for the QDD. So, the Core2Duo
emulates BDDs instead of QDDs. We generated the execution
code by gcc compiler with optimization option -O3. To obtain
the execution time per a test vector, we generated random
packet headers, and obtained the average time excluding the
time for the reading and writing packet headers.

Table V compares memory size and execution time, where
Rule denotes the name of packet classifier; Time denotes the
execution time for a test vector; and Mem denotes the memory
size. From Table V, as for the performance, the PBM32 is
8.1-11.1 times faster than that for the Core2Duo, and as for
the memory size, the PBM32 requires 9.7-436.2 times less
memory than the Core2Duo.

VII. CONCLUSION AND COMMENTS

This paper showed a packet classifier using the PBM32.
To reduce computation time and code size, first, a set of
rules for packet classifier is partitioned into groups. Then,
they are evaluated by the PBM32 in parallel. Also, the paper
derived the number of BMs to realize a given packet classifier.
We implemented the PBM32 on an FPGA, and compared
it with the Intel’s Core2Duo@1.2GHz microprocessor. The
PBM32 is 8.1-11.1 times faster than the Core2Duo, and the
PBM32 requires only 0.2-10.3 percent of the memory for the
Core2Duo.
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