
Representation of Incompletely Specified Index Generation Functions Using
Minimal Number of Compound Variables

Tsutomu Sasao, Takaaki Nakamura , Munehiro Matsuura

Kyushu Institute of Technology, Iizuka 820-8502, Japan

Abstract

This paper shows a method to reduce the number of input
variables to represent incompletely specified index genera-
tion functions. A compound variable is generated by EX-
ORing the original input variables. By using both origi-
nal and compound variables, incompletely specified index
generation functions can be represented by fewer variables.
As a means to select variables, a heuristic method using
information gains is presented. We compare representing
random functions using 1. only original variables, and 2.
both original and compound variables. Experimental re-
sults show that the use of compound variables effectively
reduces the number of input variables.

1 Introduction

Consider an index generator that stores k different n-bit
vectors, and produces an output of 0 if an n-bit input vector
does not match the contents of any of the k vectors. If a
match occurs, the output is the index of the matched vector.

Index generators are used in IP address lookup [12] and
terminal access controllers [10]. To implement index gener-
ators, CAM (Content Addressable Memory) or PLA (Pro-
grammable Logic Array) can be used. However, power dis-
sipation for these devices is relatively high [11]. Thus, im-
plementations using ordinary memories are desirable. How-
ever, the single-memory realization of index generators is
impractical, since n, the number of input variables, is often
larger than 32. To reduce the memory size, a method using
a main memory and an auxiliary memory has been devel-
oped [10]. In an index generator, the number of registered
vectors k, is much smaller than the number of the possible
input combinations, 2n. In such a case, the size of the main
memory is drastically reduced by reducing the number of
input variables.

In this paper, we consider a reduction method of the input
variables for incompletely specified index generation func-
tions. In this case, the given function is realized by reduced-

input memories and some extra circuits consisting of EXOR
gates, registers and multiplexers. The rest of the paper is or-
ganized as follows: Section 2 defines incompletely spec-
ified index generation functions, and shows their proper-
ties. Section 3 shows a method to represent an incompletely
specified index generation function using a minimal number
of compound variables. Section 4 shows an index genera-
tor using memories. Section 5 shows a heuristic method
to reduce the number of variables to represent incompletely
specified index generation functions. Section 6 shows ex-
perimental results for the exact and heuristic methods. Fi-
nally, Section 7 summarizes the work. 1

2 Incompletely Specified Index Generation
Functions

Definition 2.1 Let D = {�a1,�a2, . . . ,�ak} be a set of k dif-
ferent vectors in Bn, where B = {0, 1}. Each vector in
D is called a registered vector. The index table con-
tains the corresponding index i for each vector �vi, where
i ∈ {1, 2, . . . , k}.
f : Bn → {1, 2, . . . , k} is an index generation function
with weight k if

f(�ai) = i, (when �ai ∈ D), and

f(�b) = 0, (otherwise),

where i ∈ {1, 2, . . . , k}.
f̂ : Bn → {1, 2, . . . , k, d} is an incompletely specified
index generation function with weight k if

f(�ai) = i, (when �ai ∈ D), and

f(�b) = d, (otherwise),

where d denotes the don’t care value.

The number of variables to represent incompletely specified
logic functions can often be reduced [1, 2, 6, 10].

1The affiliation of the second author is currently, Elpida Memory Inc.,
Tokyo 104-0028, Japan.

41110

x4x3x2x1

30011

21101

11000

24

1

3

x1

x2

x3

x4

),,,(43211 xxxxf

1f

(a) Index Table (b) Decomposition Table

^

^

Figure 2.1. Reduction of variables to repre-
sent an incompletely specified index gener-
ation function

Example 2.1 Consider the index table shown in
Fig. 2.1(a). The corresponding decomposition chart
for the incompletely specified index generation function
is shown in Fig. 2.1(b), where blank cells denote don’t
cares. In this function, for the vectors �a1 = (0, 0, 0, 1),
�a2 = (1, 0, 1, 1), �a3 = (1, 1, 0, 0), and �a4 = (0, 1, 1, 1),
the values of functions are f̂1(�a1) = 1, f̂1(�a2) = 2,
f̂1(�a3) = 3, and f̂1(�a4) = 4, respectively. For other inputs,
the values of f̂1 are d (don’t care or undefined).

In the decomposition chart, when each column has at
most one specified element, then the function can be repre-
sented by column variables only, since for each column, all
don’t cares values can be set to the specified value in that
column. In Fig. 2.1(a), values for (x1, x2) are distinct, and
the index can be specified by using only these two variables.

(End of Example)

As shown in the above example, in the decomposition chart,
when each column has at most one specified element, the
function can be represented by using only column variables.

Example 2.2 Consider the index table in Fig. 2.2, and
the decomposition chart for an incompletely specified in-
dex generation function f̂2. Consider the number of vari-
ables to represent the function. In the decomposition chart
in Fig. 2.2(a), two non-zero elements exist in the column
(x1, x2) = (1, 1). Thus, the function f̂2 cannot be repre-
sented by {x1, x2}. Similarly, in the row (x3, x4) = (1, 1),
two non-zero elements exist, and the function f̂2 cannot be
represented by {x3, x4}, either.

Next, let us change the partition of the input variables
into (x1, x4) and (x2, x3) as shown in Fig. 2.2(b). In this
case, each column has at most one specified element. Note
that in the index table in Fig. 2.2(b), values of the vectors
(x1, x4) are all different. Thus, the function f̂2 can be rep-
resented by using only {x1, x4}. (End of Example)

As shown in the above examples, to represent incompletely
specified index generation functions, input variables can be

41111

x4x3x2x1

30011

21110

10100

1

42

3

x1

x2

x3

x4

41111

x3x2x4x1

30101

21110

11000

3

42

1

x1

x4

x2

x3

),,,(43212 xxxxf

(a) (b)

2f

),,,(43212 xxxxf

2f

^

^

^

^

Figure 2.2. Reduction of variables to repre-
sent an input incompletely specified index
generation function

often reduced. Minimization methods of input variables for
single-output incompletely specified functions are consid-
ered in [1, 2].

Lemma 2.1 Let p be the number of variables to represent
an incompletely specified index generation function with
weight k. Then, we have the following relation:

p ≥ �log2(k + 1)�.

For example, let k + 1 = 2p. Consider the complete binary
tree of height p. The k registered vectors can be distin-
guished by using p variables.

The minimization of the variables for an incompletely
specified index generation function can be done by reducing
the height of the binary tree representing the registered vec-
tors. To reduce the height of the tree, the variables should
be selected so as to make the height of the subtree as equal
as possible. That is, the variables should be selected so as to
make a balanced tree. This idea will be used in a heuristic
algorithm to reduce the number of input variables as ex-
plained later. Experimental results show that, most incom-
pletely specified index generation functions with weight k,
can be represented by 2�log2(k+1)�−1 or fewer variables
[10].

Conjecture 2.1 Let p be the number of variables to rep-
resent an incompletely specified index generation function
with weight k. Then, for most index generation functions,
we have the following relation:

p ≤ 2�log2(k + 1)� − 1.

3 Representation of Index Generation Func-
tions Using Compound Variables

In this part, we show a method to reduce the number of
variables to represent an incompletely specified function by
using compound variables.

Definition 3.1 For n input variables {x1, x2, . . . , xn}, a
compound variable y has a form

y = c1x1 ⊕ c2x2 ⊕ · · · ⊕ cnxn,

where ci ∈ {0, 1}. The compound degree of y is δ =∑n
i=1 ci. A variable with compound degree 1 is a primi-

tive variable. A variable with compound degree 2 is a bi-
compound variable, and a variable with compound degree
3 is a tri-compound variable.

Example 3.1 Consider the incompletely specified index
generation function f̂3 shown in Fig. 3.1. Consider the num-
ber of variables to represent this function. In Fig. 3.1(a),
the column (x1, x2) = (1, 1) has two non-zero elements.
So, the function cannot be represented by {x1, x2}. In a
similar way, the row (x3, x4) = (1, 1) has two non-zero el-
ements. So, the function cannot be represented by {x3, x4}.
Note that the decomposition chart with other partitions pro-
duce the same results. Thus, to represent the function f̂3, at
least three variables are necessary. Next, consider the bi-
compound variables y1 = x1 ⊕ x2 and y2 = x2 ⊕ x3. In
this case, we have the function ĝ3(y1, y2, x3, x4) shown in
Fig. 3.1(b). Note that, in the decomposition chart shown in
Fig. 3.1(b), each column has at most one specified element.
Thus, the function ĝ3 can be represented by using only two
variables {y1, y2}. (End of Example)

As shown in the above example, by using compound
variables, the number of input variables for incompletely
specified index generation functions can be further reduced.
In the rest of the paper, both a primitive variable xi and a
compound variables yj are treated as input variables.

4 Index Generator

Fig. 4.1 is an index generator using two memories[10].
The programmable hash circuit has n inputs and at most
2�log2(k+1)�−1 outputs. It is used to rearrange the care el-
ements. This corresponds to compound variable generators.
We consider three types of programmable hash circuits.

The first type generates primitive variables as shown in
Fig. 3.2. It consists of p multiplexers, and selects variables
from n input variables. When only primitive variables are
used, the circuit in Fig. 3.2 can be used.

The second type generates bi-compound variables as
shown in Fig. 3.3. It performs a linear transformation

40111

x4x3x2x1

31011

21101

11110

4

21

3

x1

x2

x3

x4

40100

x4x3y2y1

31010

21111

11101

4

12

3

y1

y2

x3

x4

211 xxy ⊕=
322 xxy ⊕=

),,,(43213 xxxxf),,,(43213 xxyyg

3g

(a) (b)

f3

^

^

^

^

Figure 3.1. Incompletely specified index gen-
eration function represented by compound
variables.

n

nn
22 ixy =

11 ixy =

n
ipp xy =

Figure 3.2. Primitive
variable generator.

n

n

+

n

n

+

n

n

+

111 ji xxy ⊕=

222 ji xxy ⊕=

tjtip xxy ⊕=

Figure 3.3. Bi-
compound vari-
able generator.

yi = xi ⊕ xj or yi = xi, where i �= j. It uses a pair
of multiplexers for each variable yi. The upper multiplex-
ers have the inputs x1, x2, . . . , xn. The lower multiplexers
have the inputs x1, x2, . . . , xn, except for xi. For the i-th
input, the constant input 0 is connected instead of xi. By
setting yi = xi ⊕ 0, we can implement yi = xi. The val-
ues of control variables for the multiplexers are stored in the
registers. Thus, an arbitrary variable can be selected from n
input variables. Fig. 3.3 generates bi-compound variables.

The third type generates tri-compound variables. For
each output, it requires three multiplexers and a three-input

n

n

Programmable
Hash
Circuit

Main
Memory

AUX-Memory

Comparator

n

  1)1(log2 2 ++k

 )1(log2 +k  )1(log2 +k

Figure 4.1. Index generator using two memo-
ries.

EXOR gate (the figure is omitted).
The main memory has at most 2�log2(k + 1)� − 1 in-

puts and �log2(k + 1)� outputs. The main memory pro-
duces correct outputs only for registered vectors. However,
it may produce incorrect outputs for non-registered vectors,
because the number of input variables is reduced by using
don’t care conditions. In an index generation function, if
the input vector is non-registered, then it should produce
0 outputs. To check whether the main memory produces
the correct output or not, we use the AUX memory. The
AUX memory has �log2(k + 1)� inputs and n outputs: It
stores the registered vectors for each index. The compara-
tor checks if the inputs are the same as the registered vector
or not. If they are the same, the main memory produces
a correct output. Otherwise, the main memory produces a
wrong output, and the input vector is non-registered. In this
case, the output AND gates produce 0 outputs, showing
that the input vector is non-registered. Note that the main
memory produces the correct outputs only for the registered
vectors. In this way, we can implement an incompletely
specified index generation function instead of a completely
specified one 2 in the main memory. Let p = �log2(k+1)�.
Then, the number of bits in the main memory is at most
p22p−1 ≈ 1

2p(k + 1)2. The number of bits in the AUX
memory is n2p ≈ n(k + 1). In many cases, 1

2kp >> n,
thus, the size of the AUX memory is much smaller than that
of the main memory.

5 Methods to Select Compound Variable

When only primitive variables are used, the number of
variables for an incompletely specified index generation
function can be minimized by solving a kind of a minimum
covering problem [6, 10].

2The output AND, the AUX memory and the comparator are used to
establish observability don’t cares for the main memory.

Algorithm 5.1 (Exact minimization of the number of vari-
ables to represent an incompletely specified index genera-
tion function)

1. Represent the conditions to distinguish the pairs of reg-
istered vectors by logical expressions.

2. Obtain the minimum weight assignments to the values
that cause the values of logical expressions to be 1.

Example 5.1 Let us minimize the number of variables to
represent the incompletely specified index generation func-
tion f̂2 shown in Fig. 2.2(a).

1. Let the four registered vectors be �a1 = (0, 0, 1, 0),
�a2 = (0, 1, 1, 1), �a3 = (1, 1, 0, 0), and �a4 =
(1, 1, 1, 1).

2. To distinguish �a1 and �a2, either x2 or x4 is necessary.
Thus, we have the condition x2 ∨ x4 = 1. Similarly,
to distinguish �a1 and �a3, we have the condition x1 ∨
x2 ∨ x3 = 1; to distinguish �a1 and �a4, we have the
condition x1∨x2∨x4 = 1; to distinguish�a2 and�a3, we
have the condition x1 ∨ x3 ∨ x4 = 1; to distinguish �a2

and�a4, we have the condition x1=1; and to distinguish
�a3 and �a4, we have the condition x3 ∨ x4 = 1.

3. To distinguish all the registered vectors, all the con-
ditions must be true at the same time. Thus, we have
the condition R = 1, where R = x1(x2 ∨ x4)(x3 ∨
x4)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x4)(x1 ∨ x3 ∨ x4).

4. By the distributive law and the absorption law, we have
the relation R = x1x2x3 ∨ x1x4. The degree of the
product term with the minimum number of literals is
two. The product term x1x4 shows the minimum solu-
tion. Thus, the function f̂2 can be represented by two
variables x1 and x4.

(End of Example)

In principle, the minimization of variables consisting of
both primitive and compound variables can be done in the
same way as Algorithm 5.1. That is, we can perform the
minimization of the variables, where not only the primi-
tive variables x1, x2, . . . , xn, but also the compound vari-
ables y1, y2, . . . , ym can be considered as the input vari-
ables. When both the primitive and the bi-compound vari-
ables are used, the number of the input variables to consider
is

n +
(

n

2

)

=
n(n + 1)

2
.

When tri-compound variables in addition to the bi-
compound and the primitive variables are used, the number
of the variables to consider is

n +
(

n

2

)

+
(

n

3

)

=
n(n2 + 5)

6
.

This problem can be solved by first representing the log-
ical expressions by a BDD (Binary Decision Diagram), and
then finding the path with the minimum weight. When we
use a BDD to minimize the number of variables, the size
of the BDD increases exponentially with the number of the
input variables. Thus, only a limited number of input vari-
ables can be solved.

Definition 5.1 In an incompletely specified index genera-
tion function with weight k, the balance factor with respect
to xi is k − |hi0 − hi1|, where hi0 is the number of regis-
tered vectors such that xi = 0, and hi1 is the number of
registered vectors such that xi = 1.

From here, we will consider a heuristic method to represent
incompletely specified functions. Variables with as large
balance factor tend to partition the set of vectors into more
balanced sets. Let k be the number of registered vectors.
When the given set of variables partitions the set of vectors
into balanced sets, the number of variables to represent the
function is reduced to �log2(k+1)�. From this, we have the
following:

Algorithm 5.2 (Heuristic reduction of the number of vari-
ables)

1. Let the input variables be x1, x2, . . . , xn.

2. Select m compound variables yi. In this case, select
variables with as large a balance factor as possible.

3. By using Algorithm 5.1, reduce the number of the in-
put variables for an incompletely specified index gen-
eration function, where the number of original inputs
variables is n + m, and the number of vectors is k.

The larger the value of m, the better solutions we can get.
However, computation time increases with an increase of
m.

Next, we present the information gain method, a
heuristic method to select compound variables. The selec-
tion of the compound variables can be considered as the
optimization of the binary decision tree [3].

When selecting compound variables, the larger the bal-
ance factor of a variable, the larger the information gain we
can achieve. Thus, a variable with a large information gain
(i.e., a variable with a large balance factor) tends to reduce
the number of variables in the decision tree.

Algorithm 5.3 (The information gain method)

1. Among the compound variables and primitive vari-
ables, select a variable y1 with the largest balance fac-
tor. Then, partition the registered vectors into two sets
with y1 = 0 and y1 = 1. Let i← 1.

2. Among the sets with more than one element, select
a variable yi+1 whose minimal balance factor is the
maximum, and partition the sets with yi+1. Let i ←
i + 1.

3. Iterate the above step until all the sets have one ele-
ment.

4. The function can be represented by (y1, y2, . . . , yp).

Example 5.2 Consider the incompletely specified index
generation function f̂4 shown in Fig. 5.1. Select the com-
pound variables by using the information gain method. In-
stead of the set of vectors, the algorithm is illustrated by the
set of indices of the vectors.

First, to partition the initial set S11 = {1, 2, 3, 4, 5, 6, 7},
the variable y1 is selected. In this case, when y1 = x1, we
have h0 = 4, h1 = 3 in the set S11. Thus, the variable
y1 partitions the set S11 into S21 = {3, 4, 5, 6} and S22 =
{1, 2, 7}.

Second, two sets S21 and S22 are partitioned by the vari-
able y2. In this case, when y2 = x2 ⊕ x3, the set S21 is
partitioned into S31 = {4, 5} and S32 = {6, 3}. Also, the
set S22 is partitioned into S33 = {7} and S34 = {1, 2}.

Third, by using the variable y3, S31, S32, and S34,
the sets with more than two elements, are partitioned. In
this case, by selecting y3 = x4, each set is partitioned
into two. After this partition, each set has just one ele-
ment, and we terminate the algorithm. Thus, the function
can be represented by (y1, y2, y3) = (x1, x2 ⊕ x3, x4).

(End of Example)

6 Experimental Results

6.1 Design of the Experiment

To show the effectiveness of the algorithms, we mini-
mized the number of variables for randomly generated in-
completely specified index generation functions, where

1. only primitive variables are used (δ = 1),

2. both primitive and bi-compound variables are used
(δ ≤ 2), and

3. tri-compound variables in addition to primitive and bi-
compound variables are used (δ ≤ 3).

When only primitive variables are used, the exact minimum
solutions were obtained by using Algorithm 5.1. When
compound variables are used, Algorithm 5.3 (information
gain method) was used to obtain near-optimal solutions.
Furthermore, to examine the optimality of the heuristic
solutions, for small-scale problems that use bi-compound

43 xy =

11 xy =
322 xxy ⊕=

3110

7101

1011

2111

y3y2y1

6010

5100

4000

321

31010

71001

10011

21011

x4x3x2x1

60100

51000

40000

3

7

1

2

6

5

4 5 6 3 7 1 2

{1,2,3,4,5,6,7}

{3,4,5,6} {1,2,7}

{4,5} {3,6} {1,2}

y1

y2 y2

y3 y3 y3

0 1

0

0 0

0

0

1

11 1

1

),,,(43214 xxxxf),,(3214 yyyg

4f 4g

^

^

^

^

Figure 5.1. Selection of variables using infor-
mation gain method

variables, optimal solutions were obtained by Algorithm
5.1.

For all combinations of (k, s), where k = 15, 63, 255,
1023 and s = 0, 5, 10, we randomly generated 1000 incom-
pletely specified index generation functions of n = 24 vari-
ables, where s is the skew factor showing the distribution
of 0’s and 1’s in the registered vectors. When s = 0, the 0’s
and 1’s appear in the equal probability. A large s denotes a
high probability of 0’s appearing in the registered vectors.
The registered vectors are generated as follows:

Algorithm 6.1 (Generation of Registered Vectors)

1. Let the threshold be Th = (230 − 1) + (226 × s).

2. Obtain a random number R. Let R1 be the integer
represented by the least significant 31 bits of R. If
R1 ≥ Th, generate 1. Otherwise, generate 0.

3. Perform Step 2 n times to generate an n-bit vector.

4. Perform Step 3 k times to generate k registered vec-
tors. When the identical vectors appear, ignore it.

To assess the quality of the solutions, we use the excessive
variable ratio:

Definition 6.1 Consider an n-variable incompletely speci-
fied index generation function with k registered vectors. Let
n̂ be the number of input variables after reduction. Then,
the excessive variable ratio is

re =
n̂

�log2(k + 1)� − 1 (6.1)

re = 0 shows that an optimal solution is achieved. A large
re shows that the representation uses many extra variables.

6.2 Reduction of Input Variables

Table 6.1 shows the average number of variables after
reduction and the excessive variable ratio re, for different
values of k, s, and δ, where n = 24.

6.2.1 Influence of Skew Factor

s = 0 denotes that the probabilities 0’s and 1’s appearing
in the registered vectors are the same, while large s denotes
that 0’s appears more often than 1’s. When k and δ are fixed,
functions with large s require more variables.

6.2.2 Influence of Compound Degree

Variables with large δ require fewer variables to represent
the function. Especially for functions with many registered
vectors and a large skew factor s, variables with large δ are
necessary to achieve small re. For example, when k=1023
and s = 10, representation of the functions using only prim-
itive variables require 24 variables. This means that we can-
not reduce the number of variables. We conjecture that rep-
resentations with variables with δ ≥ 4 require fewer vari-
ables.

6.2.3 Computation Time

Table 6.2 compares the computation time of Algorithm 5.1
(exact) with that of Algorithm 5.3 (heuristic). Algorithm
5.1 minimizes the number of primitive variables, while Al-
gorithm 5.3 minimizes the number of both primitive and
compound variables. Note that Algorithm 5.3 spent much
less time than Algorithm 5.1. This shows that the heuristic
method is quite fast.

Algorithm 5.1 took up to 575.171 seconds to select prim-
itive and bi-compound variables when s = 10. On the other
hand, Algorithm 5.3 took at most 0.047 seconds. In the ex-
periment, we used a computer with Core 2 Duo 2.66GHz,
4GByte of memory, running on Windows XP Professional
Service Pack 3.

6.3 Comparison of Optimal Solutions with
Heuristic Ones

To see the optimality of heuristic solutions obtained by
Algorithm 5.3, we obtained the exact optimum solutions by
Algorithm 5.1, and calculated the relative error. Table 6.3
compares optimal solutions (A) with heuristic solutions (B).
The relative error is calculated as B−A

A . When both primi-
tive and bi-compound variables are used, the relative error
was at most 0.118.

Table 6.1. Numbers of variables and re

k s δ Average # re

of variables

1 4.882 0.221
0 ≤ 2 4.209 0.052
≤ 3 4.000 0.000

1 4.997 0.249
15 5 ≤ 2 4.299 0.075

≤ 3 4.000 0.000
1 6.432 0.608

10 ≤ 2 4.905 0.226
≤ 3 4.059 0.015

1 7.996 0.333
0 ≤ 2 7.968 0.328
≤ 3 7.334 0.222

1 8.936 0.489
63 5 ≤ 2 7.983 0.331

≤ 3 7.381 0.230
1 13.480 1.247

10 ≤ 2 9.448 0.575
≤ 3 7.966 0.328

1 11.852 0.482
0 ≤ 2 11.819 0.477
≤ 3 11.000 0.375

1 13.212 0.652
255 5 ≤ 2 12.001 0.500

≤ 3 11.003 0.375
1 21.952 1.744

10 ≤ 2 15.543 0.943
≤ 3 12.240 0.530

1 15.889 0.589
0 ≤ 2 15.921 0.592
≤ 3 15.016 0.502

1 18.248 0.825
1023 5 ≤ 2 16.351 0.635

≤ 3 15.021 0.502
1 24.000 1.400

10 ≤ 2 20.395 1.040
≤ 3 16.027 0.603

k: number of registered vectors, s: skew factor, δ: com-
pound degree; re: excessive variable ratio, n = 24, when
δ = 1 Algorithm 5.1 was used, when δ ≤ 2 or δ ≤ 3 Algo-
rithm 5.3 was used.

7 Conclusion and Comments

In this paper, we presented methods to reduce the num-
ber of variables to represent incompletely specified index
generation functions. Also, we demonstrated that the num-
ber of variables can be further reduced by using compound
variables. Since the exact minimization of the variables is

Table 6.2. Average CPU time
k δ Algorithm Average

CPU time [sec]

1 5.1 1.454
63 ≤2 5.3 0.002

≤3 5.3 0.014

1 5.1 7.647
255 ≤2 5.3. 0.010

≤3 5.3 0.079

1 5.1 1.011
1023 ≤2 5.3 0.056

≤3 5.3 0.450

δ: compound degree; s = 0, n = 24.

Table 6.3. Quality of heuristic solutions
Optimal Heuristic Relative error

s A B (B −A)/A
0 4.000 4.033 0.008
5 4.000 4.088 0.022

10 4.339 4.851 0.118

s: skew factor. n = 24, k = 15.
For optimal solutions, Algorithm 5.1 was used.
For heuristic solutions, Algorithm 5.3 was used.

time-consuming, we developed a heuristic algorithm. Ex-
perimental results show the effectiveness of the method.

The circuit to realize tri-compound variables may be too
expensive for some applications. For such applications,
a method using both primitive and bi-compound variables
seems to be promising.

In this paper, we used linear functions as compound vari-
ables, since they can be realized by simple circuits, and
have been shown to be cost effective by experiments. Also,
linear-transformations are well studied [5], and implemen-
tation is relatively easy. However, in principle, compound
variables can be any functions. For example, instead of us-
ing the bi-compound variable generator shown in Fig. 3.3,
2-input LUTs can be used. This may further reduce the
number of the input variables. Unfortunately, LUTs are
more expensive than linear function generators, and no ef-
ficient algorithm to find the best compound variables is
known.

8 Acknowledgments

This research is partly supported by the Japan Society
for the Promotion of Science (JSPS) Grant in Aid for Scien-

tific Research, and the MEXT Knowledge Cluster Initiative
(the second-stage). Discussion with Prof. Jon T. Butler was
quite useful.

References

[1] C. Halatsis and N. Gaitanis, “Irredundant normal
forms and minimal dependence sets of a Boolean
function,” IEEE Transactions on Computers, Vol. C-
27, No. 11, pp. 1064-1068, November, 1978.

[2] Y. Kambayashi, “Logic design of programmable logic
arrays,” IEEE Trans. on Computers, Vol. C-28, No. 9,
pp. 609-617, September, 1979.

[3] B. M. E. Moret, “Decision trees and diagrams,” ACM
Computing Surveys, Vol. 14, No. 4, pp. 594-623, De-
cember, 1982.

[4] H. Nakahara, T. Sasao, M. Matsuura, and Y. Kawa-
mura, “A Parallel sieve method for a virus scanning
engine,” 11th EUROMICRO Conference on Digital
System Design, Architectures, Methods and Tools, Pa-
tras, Greece (DSD 2009).

[5] R. J. Lechner,“ Harmonic analysis of switching func-
tions,” in A. Mukhopadhyay (e.d.), Recent Develop-
ment in Switching Theory, Academic Press, 1971.

[6] T. Sasao, “On the number of dependent variables
for incompletely specified multiple-valued functions,”

International Symposium on Multiple-Valued Logic
(ISMVL-2000), pp. 91-97, May, 2000.

[7] T. Sasao, “Design methods for multiple-valued in-
put address generators,” (invited paper) International
Symposium on Multiple-Valued Logic (ISMVL-2006),
Singapore, May 2006.

[8] T. Sasao, “A Design method of address generators us-
ing hash memories,” IWLS-2006, pp. 102-109, Vail,
Colorado, U.S.A, June 7-9, 2006.

[9] T. Sasao and M. Matsuura, “An implementation of
an address generator using hash memories,” 10th EU-
ROMICRO Conference on Digital System Design, Ar-
chitectures, Methods and Tools (DSD-2007), Aug. 27
- 31, 2007, Lubeck, Germany, pp.69-76.

[10] T. Sasao, “On the numbers of variables to represent
sparse logic functions,” International Conference on
Computer Aided Design (ICCAD-2008), pp. 45-51,
November, 2008.

[11] D. E. Taylor, “Survey and taxonomy of packet classifi-
cation techniques,” ACM Computing Surveys, Vol. 37,
Issue 3, pp. 238-275, September, 2005.

[12] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner,
“Scalable high speed IP routing lookups,” ACM SIG-
COMM Computer Communication Review, Vol. 27,
NO. 4, pp. 25-38, 1997.

