
Programmable Numerical Function Generators for Two-Variable Functions

Shinobu Nagayama Jon T. Butler Tsutomu Sasao

Dept. of Computer and Dept. of Electrical and Dept. of Computer Science
Network Engineering, Computer Engineering, and Electronics,

Hiroshima City University, Naval Postgraduate School, Kyushu Institute of Technology,
Hiroshima 731-3194, Japan CA 93943-5121, USA Iizuka 820-8502, Japan

Abstract

This paper proposes a design method and programmable
architectures for numerical function generators (NFGs) of
two-variable functions. To realize a two-variable function
in hardware, we partition a given domain of the given func-
tion into segments, and approximate the function by a poly-
nomial in each segment. This paper introduces two planar
segmentation algorithms that efficiently partition a domain
of a two-variable function. This paper also introduces two
architectures that can realize a wide range of two-variable
functions. Our architectures allow a systematic design of
two-variable functions. FPGA implementation results show
that, for a complicated function, our NFG achieves 58% of
memory size and 39% of delay time of a circuit designed
using one-variable NFGs.

1. Introduction

The ability to compute numerical functions at a high
speed is important in many applications, including 3D com-
puter graphics and digital signal processing [11]. How-
ever, most existing methods are intended only for one-
variable functions [4, 9, 13–16], and only a few methods
exist for multi-variable functions [5, 6, 17]. Since these pa-
pers [5, 6, 17] present hardwares dedicated to specific func-
tions, different functions need different design methods. As
far as we know, systematic design method for generic multi-
variable functions has never been presented.

A straightforward design method for arbitrary multi-
variable function is to use a single memory in which the
address is a combination of values of variables and the con-
tent of that address is the corresponding value of function.
This method is fast, but requires a 2mn-word memory to im-
plement an m-variable function with n bits for each variable.
Even for small m and n, this method is impractical because
of large memory size.

To produce a practical implementation, multi-variable
functions are often designed using combination of one-

variable function generators, multipliers, and adders [5, 6].
This design method reduces the required memory size.
However, depending on the function implemented, it can
produce a slow implementation because of its complicated
hardware architecture. Also, complicated hardware archi-
tecture makes error analysis harder. That is, guaranteeing
output accuracy becomes harder.

This paper proposes a systematic design method for two-
variable functions. Since our design method is based on
a piecewise polynomial approximation, hardware architec-
tures are simple even for complicated functions. To ap-
proximate a given function using piecewise polynomials,
this paper introduces two planar segmentation algorithms
that partition a given domain of two-variable function effi-
ciently. This paper also introduces two programmable ar-
chitectures that can realize a wide range of two-variable
functions.

The rest of this paper is organized as follows: Section 2
introduces a number representation and the decision dia-
grams used in this paper. Section 3 presents two planar seg-
mentation algorithms. Section 4 presents two architectures
for two-variable functions. Section 5 evaluates performance
of our segmentation algorithms and architectures for spe-
cific two-variable functions. And, Section 6 concludes the
paper. Error analysis for our NFGs is omitted because it is
the almost same as [12, 15].

2. Preliminaries

2.1. Number Representation and Errors

Definition 1 A value X represented by the binary fixed-
point representation is denoted by

X = (xl−1 xl−2 . . . x1 x0. x−1 x−2 . . . x−m),

where xi ∈ {0,1}, l is the number of bits in the integer part,
and m is the number of bits in the fractional part. Each bit
xi contributes 2ixi to the value of X except, xl−1, which con-
tributes −2l−1xl−1. That is, the fixed-point representation
is in two’s complement.



Definition 2 Error is the absolute difference between the
exact value and the value produced by the hardware. Ac-
ceptable error is the maximum error that an NFG may as-
sume; it is usually a specification to be satisfied by the hard-
ware. Approximation error is the error caused by a func-
tion approximation. Acceptable approximation error is the
maximum approximation error that a function approxima-
tion may assume. Rounding error is the error caused by a
binary fixed-point representation.

Definition 3 Accuracy is the number of bits in the frac-
tional part of a binary fixed-point representation. m-bit ac-
curacy specifies that m bits are used to represent the frac-
tional part of the number. When the maximum error is 2−m,
the accuracy is no greater than 1 unit in the last place
(ULP) [11]. In this paper, an m-bit accuracy NFG is an
NFG with an m-bit fractional part of the inputs, an m-bit
fractional part of the output, and a 1 ULP error.

2.2. Decision Diagrams

Definition 4 A binary decision diagram (BDD) [2, 10] is
a rooted directed acyclic graph (DAG) representing a logic
function. The BDD is obtained by recursively applying the
Shannon expansion f = xi f0 + xi f1 to the logic function. It
consists of two terminal nodes representing function values
0 and 1 respectively, and non-terminal nodes labeled by in-
put variables. Each non-terminal node has two unweighted
outgoing edges, 0-edge and 1-edge, that correspond to the
values of the input variable. The terminal nodes have no
outgoing edges. We consider only ordered BDDs, where the
order of the variables is the same for every path from the
root node to a terminal node. We consider only reduced
BDDs, where identical subtrees are combined into a single
tree.

Definition 5 A multi-terminal BDD (MTBDD) [3] is an
extension of a BDD, that represents an integer-valued func-
tion: {0,1}n → Z, where Z is a finite set of integers. In the
MTBDD, the terminal nodes are labeled by the values of Z.

Definition 6 An edge-valued BDD (EVBDD) [7,8] is also
an extension of a BDD, that represents an integer-valued
function. The EVBDD is obtained by repeatedly applying
the expansion f = xi f0 + xi( f ′1 + α) to the integer-valued
function, where f1 = f ′1 +α, and α is the constant term of f1.
In the EVBDD, each 1-edge has an integer weight α and all
0-edges have weight 0. There is only one terminal node; it
is labeled 0. The incoming edge into the root node can have
a non-zero weight. For example, a non-zero weight α on the
incoming edge of the root node adds α to all sums associ-
ated with the EVBDD. Indeed, it occurs when the EVBDD
is a sub-EVBDD to a larger EVBDD.

Example 1 Fig. 1(b) and (c) show an MTBDD and an
EVBDD for the integer-valued function f defined by

x1 y1 x0 y0 f x1 y1 x0 y0 f

0 0 0 0 0 1 0 0 0 2
0 0 0 1 0 1 0 0 1 2
0 0 1 0 0 1 0 1 0 2
0 0 1 1 0 1 0 1 1 2
0 1 0 0 1 1 1 0 0 3
0 1 0 1 1 1 1 0 1 4
0 1 1 0 1 1 1 1 0 5
0 1 1 1 1 1 1 1 1 6

(a) Function table.
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Figure 1. MTBDD and EVBDD for an integer-
valued function.

Fig. 1(a). In Fig. 1(b) and (c), dashed lines and solid lines
denote 0-edges and 1-edges, respectively. Note that the
EVBDD has weighted 1-edges. In the MTBDD, terminal
nodes represent function values. Thus, to evaluate the func-
tion, we traverse the MTBDD from the root node to a ter-
minal node according to the input values, and obtain the
function value (an integer) from the terminal node. On the
other hand, in the EVBDD, we obtain the function value by
summing the weights of the edges traversed from the root
node to the terminal node. (End of Example)

3. Piecewise Polynomial Approximation Based
on Planar Segmentation

3.1. Planar Segmentation Problem

To approximate a given two-variable function by piece-
wise polynomials, we need to partition a given domain of
the function into segments. The domain of a two-variable
function consists of planar segments, and requires a planar
segmentation algorithm. The memory size and speed of an
NFG are strongly dependent on the efficiency of the seg-
mentation algorithm. Thus, effective planar segmentation
algorithms are important to design fast and compact NFGs.
To produce an optimum segmentation, we consider the fol-



Input: Numerical function f (X ,Y), domain {[Xb,Xe), [Yb,Ye)} for X and Y , accuracy min of X and Y , polynomial order d, and accept-
able approximation error εa.

*Requirement: X and Y are represented in the same number of bits.
Output: Segments {[Xb,P0), [Yb,Q0)},{[Xb,P0), [Q0,Q1)} . . ., {[Pr−1,Xe), [Qr−1,Ye)}, and correction values v0,v1, . . . ,vk−1.

Step:
1. For {[Xb,Xe), [Yb,Ye)}, compute an approximate polynomial gd(X ,Y).
2. Compute the maximum positive error max f g = max{ f (X ,Y )−gd (X ,Y )}.
3. Compute the maximum negative error min f g = min{ f (X ,Y )−gd(X ,Y )}.
4. Compute approximation error εd = (max f g −min f g)/2 and correction values v = (max f g +min f g)/2.
5. If εd < εa or (Xe −Xb) ≤ 2−min , then stop.
6. Else, partition {[Xb,Xe), [Yb,Ye)} into four segments {[Xb,P), [Yb,Q)}, {[Xb,P), [Q,Ye)}, {[P,Xe), [Yb,Q)}, and {[P,Xe), [Q,Ye)},

where P = (Xb +Xe)/2 and Q = (Yb +Ye)/2.
7. Repeat Steps 1, 2, . . . ,6 for each new segment recursively, until the maximum approximation errors are smaller than εa in all

segments.

Figure 2. Recursive planar segmentation algorithm.

lowing:

1. number of words in the coefficients memory, which is
the number of segments, and

2. complexity of the segment index encoder, which maps
values of X and Y to a segment number.

Fewer segments are preferred because the number of seg-
ments directly affects memory size of the NFG. The com-
plexity of the segment index encoder is also important.
Even if the number of segments is minimum, a large NFG
is produced if the segment index encoder is very large. Es-
pecially, planar segmentations tend to require significantly
more complex segment index encoders than linear segmen-
tations. Thus, planar segmentation algorithms considering
these two parameters are essential to the design of fast and
compact NFGs. Also, the complexity of segmentation algo-
rithms should be considered in order to reduce design time.

The next subsection presents two heuristic planar seg-
mentation algorithms.

3.2. Planar Segmentation Algorithms

We first present a recursive planar segmentation algo-
rithm to reduce the hardware complexity of both the coef-
ficients memory (the number of segments) and the segment
index encoder.

We provide a geometric explanation for piecewise planar
(1st-order) polynomial approximation. Approximating a
two-variable function is accomplished with parallelograms
that project onto squares on the X-Y plane. First, a (large)
single parallelogram is used to approximate the entire given
function. It projects onto the X-Y plane as a square with
corners at (Xb,Yb), (Xb,Ye), (Xe,Yb), and (Xe,Ye), where
Xe −Xb = Ye −Yb. The parallelogram’s orientation and al-
titude are chosen to minimize the maximum error. If this
maximum error exceeds the given acceptable error, the fol-
lowing process is repeated. The projected square is divided

into four squares each one fourth the area of the original
square. This square is said to be quadsected. In each of the
four sections, a parallelogram is determined that approxi-
mates the function with the smallest maximum error. If that
error exceeds the given acceptable error, that square is quad-
sected, and the process repeated. The process stops when all
square areas are approximated by a parallelogram to within
the given acceptable error. It follows that, in areas where
the function varies rapidly, small squares are used, and, in
areas where the function is nearly planar, large squares are
used.

Fig. 2 shows this algorithm. Note that this algorithm
can apply to polynomial approximation with any degree.
The inputs are a numerical function f (X ,Y ), a domain
{[Xb,Xe), [Yb,Ye)} for X and Y , an accuracy min of X and
Y , a polynomial order d, and an acceptable approximation
error εa. Then, this algorithm produces segments by recur-
sively partitioning a segment into four equal-sized square
segments until achieving the acceptable approximation er-
ror εa in all segments. Note that this algorithm creates a
segment of size wi ×wi, where wi = 2hi ×2−min and hi is an
integer. That is, all the segmentation points Pi and Qi are re-
stricted to values of which the least significant hi bits are 0
(i.e., Pi = (. . . p− j+1 p− j 00 . . . 0), where j = min −hi). In
Fig. 2, the approximating polynomial gd(X ,Y ) is obtained
by a Taylor expansion of f (X ,Y ) at the center (u,v) of the
segment:

gd(X ,Y ) = f (u,v)+

(

s
∂

∂X
+ t

∂
∂Y

)

f (u,v)

+

(

s
∂

∂X
+ t

∂
∂Y

)2 f (u,v)
2!

+ . . .+

(

s
∂

∂X
+ t

∂
∂Y

)d f (u,v)
d!

,

where s = X −u, t = Y − v,u = (Bx +Ex)/2, and v = (By +
Ey)/2. To reduce the approximation error, the maximum
positive error max f g and the maximum negative error min f g
are equalized by a vertical shift of gd(X ,Y ) with correc-
tion value v. Thus, the approximation error is (max f g −
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Figure 3. Two architectures for two-variable
NFGs based on planar approximation.

min f g)/2, and the approximating polynomial used for the
NFG is gd(X ,Y )+ v.

Next, we present the planar uniform segmentation algo-
rithm. Since the recursive planar segmentation algorithm
produces non-uniform segmentation, the segment index en-
coder is needed to compute a segment number from values
of X and Y . However, in a uniform segmentation where
the number of segments is a power of 2, the segment in-
dex encoder is not necessary because a segment number
is obtained by the most significant bits of X and Y (see
Fig. 3(b)). This eliminates the delay of the segment index
encoder, and produces fast NFGs. To produce uniform seg-
mentation, we begin by finding the smallest square segment
needed to achieve the acceptable approximation error using
the recursive segmentation algorithm shown in Fig. 2. Then,
we partition a given domain into square segments with the
same size as the smallest segment.

4. Architectures for Two-Variable Numerical
Function Generators

4.1. Architectures Based on Recursive and
Uniform Segmentations

For each segment {[Bx,Ex), [By,Ey)} produced by a pla-
nar segmentation algorithm, we compute the approximation
to f (X ,Y ) as a polynomial P(X ,Y ) that is a Taylor expan-
sion with a correction value. Expanding and rearranging the
polynomial yields

P(X ,Y ) = C0 +Cx(X −Bx)+Cy(Y −By) (1)

+Cxy(X −Bx)(Y −By)+Cx2(X −Bx)
2

+Cy2(Y −By)
2 + . . .+Cyd(Y −By)

d .

Fig. 3 shows two architectures for two-variable NFGs re-
alizing (1) which use piecewise planar approximation (only
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(a) Segment index function.
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Figure 4. Segment index encoder.

the first three terms of (1). Expanding these architectures to
a polynomial approximation with higher degree is straight-
forward. Fig. 3(a) and (b) show architectures based on re-
cursive segmentation and uniform segmentations, respec-
tively. The segment index encoder converts values of X and
Y into a segment number. This, in turn, is applied as the
address input of the Coefficients Memory. The coefficients
are applied to adders and multipliers to form the polyno-
mial value P(X ,Y ). Note that Fig. 3(a) uses bitwise ANDs
to compute X −Bx and Y −By. In recursive segmentation,
we can realize X −Bx and Y −By using AND gates driven
on one side by Bx and By, respectively [13].

Note that Fig. 3(b) has neither a segment index encoder
nor bitwise ANDs. In uniform segmentation, the segment
index encoder and bitwise ANDs are not necessary because
a segment number, X − Bx, and Y − By are obtained by
the most significant bits and the least significant bits of X
and Y , respectively. Since modern FPGAs have logic el-
ements, synchronous memory blocks, and dedicated mul-
tipliers, these architectures are efficiently implemented by
those hardware resources in an FPGA.

4.2. Architecture and Design Method for
Segment Index Encoder

The segment index encoder realizes the segment index
function: {0,1}n × {0,1}n → {0,1, . . . ,k − 1} shown in
Fig. 4(a), where X and Y have n bits, and k denotes the
number of segments. We realize this function with the ar-
chitecture shown in Fig. 4(b). In this architecture, the in-
terconnecting lines between adjacent LUT memories deter-
mine the position in the EVBDD (labeled rails), and the
outputs from each LUT memory to the adders tally the func-
tion value (labeled Arails). Consider the design of the LUT
cascade and adders in Fig. 4(b), given the segmentation pro-
duced in Fig. 2.

We begin by representing the segment index function
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Figure 5. Relationship between recursive
segmentation and MTBDDs.

using an MTBDD. Fig. 5 illustrates the relationship be-
tween recursive segmentation and MTBDDs. Then, we
convert the MTBDD into an EVBDD. By decomposing the
EVBDD, as shown in Fig. 6, we obtain the architecture in
Fig. 4(b). In Fig. 6, the column labeled as ‘ri’ in the table
of each LUT memory denotes the rails that represent sub-
functions in the EVBDD. And, the column ‘ai’ in Fig. 6 de-
notes the Arails that represent the sum of weights of edges.
In the EVBDD, “(ai,ri)” assigned to edges that cut across
the horizontal lines represents the sum of weights and sub-
functions, respectively. For more detail on this architecture,
see [13].

In this architecture, the size of LUT memories realizing
the recursive segmentation depends on the number of seg-
ments. Specifically,

Theorem 1 Let seg f unc(X ,Y ) be a segment index func-
tion obtained by a recursive planar segmentation. The seg-
ment index function can be realized by the segment index
encoder shown in Fig. 4(b) with at most dlog2 ke rails and
dlog2 ke Arails, where k is the number of segments.

Proof: See Appendix.

In our architectures, the coefficients memory and the
LUT memories of the segment index encoder are imple-
mented by embedded RAMs (e.g. M4Ks in Altera FPGAs).
Thus, by changing the data for the coefficients memory and
the LUT memories, a wide class of two-variable functions
can be realized by a single architecture. Since just changing
the RAM data can switch functions, we can switch func-
tions without reprogramming the FPGA.
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Figure 6. Decomposition of the EVBDD.

5. Experimental Results

5.1. Number of Segments and Computation
Time for Algorithms

Table 1 shows the number of segments produced by the
two segmentation algorithms presented in Section 3, and
their computation time for various functions [1]. These seg-
ments are required to approximate two-variable functions
by planar (1st-order) polynomials. In this table, WaveRings,
Gaussian, and Beta are defined as:

WaveRings =
cos

(√
X2 +Y 2

)

√
X2 +Y 2 +0.25

Gaussian =
1

Y
√

2π
e−

X2

2Y2

Beta = 2
Z π

2

0
sin2X−1 θ cos2Y−1 θ dθ =

Γ(X)Γ(Y )

Γ(X +Y )

Table 1 shows that, for all functions except sin(πXY ), the
recursive segmentation algorithm produces many fewer seg-
ments than the uniform segmentation algorithm. Especially,
for higher accuracy, the number of segments needed in re-
cursive segmentation is only a few percent of the number of
segments needed in uniform segmentation. For sin(πXY ),
the additional segments needed in uniform segmentation are
not so large even for higher accuracy. This means that, for
this function, the uniform segmentation method also pro-
duces an NFG with reasonable size. In addition, Table 1
shows that both algorithms produce segments with small
CPU time. Such quick segmentation is useful to reduce de-
sign time for NFGs.

5.2. Memory Sizes Needed for Numerical
Function Generators

Table 2 compares total memory sizes needed for NFGs
based on the two planar approximation architectures shown
in Fig. 3. Note that the NFGs based on recursive segmenta-
tion have two kinds of memories: coefficients memory and



Table 1. Number of segments for two segmentation methods based on planar approximation.
No. Function Domain X and Y have 8-bit accuracy X and Y have 12-bit accuracy

f (X ,Y ) (Acceptable approx. error: 2−10) (Acceptable approx. error: 2−14)
No. of segments Rs Time [sec.] No. of segments Rs Time [sec.]
Recur. Uni. [%] Recur. Uni. Recur. Uni. [%] Recur. Uni.

f0 sin(πX) ln(Y ) 0 ≤ X < 1, 0 < Y < 1 4,696 65,280 7 0.19 0.02 244,807 16,773,120 1 8.9 7.2
f1 sin(πX)

√
Y 0 ≤ X < 1, 0 < Y < 1 1,393 16,384 9 0.07 0.61 38,773 16,773,120 0.2 1.7 6.7

f2 sin(πXY ) 0 ≤ X < 1, 0 ≤ Y < 1 1,486 4,096 36 0.07 0.19 26,122 65,536 40 1.2 3.2
f3 X4Y 5 0 ≤ X < 1, 0 ≤ Y < 1 457 4,096 11 0.03 0.20 8,179 262,144 3 0.5 11.1
f4 1/

√
X2 +Y 2 0 < X < 1, 0 < Y < 1 3,835 65,025 6 0.11 0.01 173,552 16,769,025 1 5.0 5.1

f5 XY/
√

X2 +Y 2 0 < X < 1, 0 < Y < 1 376 4,096 9 0.01 0.11 6,523 1,048,576 0.6 0.2 22.5
f6 WaveRings 0 ≤ X ≤ π, 0 ≤ Y ≤ π 1,619 10,201 16 0.08 0.39 28,377 646,416 4 1.3 18.9
f7 Gaussian 0 < X < 1, 0 < Y < 1 3,182 65,025 5 0.12 0.02 141,113 16,769,025 0.8 5.5 7.1
f8

√
X2 +Y 2 0 < X < 1, 0 < Y < 1 355 4,096 9 0.01 0.12 6,160 1,048,576 0.6 0.2 24.6

f9
3√X3 +Y 3 0 < X < 1, 0 < Y < 1 400 16,384 2 0.04 0.76 6,790 4,194,304 0.2 0.5 188.8

f10 Beta 1/8 ≤ X < 1, 1/8 ≤Y < 1 5,815 50,176 12 0.73 0.05 187,201 3,211,264 6 24.6 326.5
Recur.: Recursive segmentation. Uni.: Uniform segmentation. Rs: Recur. / Uni. × 100 (%).
Time: CPU time needed for segmentation algorithm.
Experiment environment
CPU: Intel Xeon 2.6GHz Memory : 1GB OS: Redhat Linux C compiler : gcc -O2

Table 2. Total memory sizes needed for NFGs
based on two planar approximation architec-
tures.

No. 8-bit accuracy NFGs 12-bit accuracy NFGs
Recursive Uniform Rm Recursive Uniform Rm

f0 260,052 783,360 33 16,683,510 285,143,040 6
f1 59,511 360,448 17 2,030,356 201,277,440 1
f2 69,352 110,592 63 1,313,684 2,293,760 57
f3 25,392 102,400 25 516,230 8,126,464 6
f4 226,403 1,040,400 22 13,054,030 402,456,600 3
f5 18,120 90,112 20 369,189 27,262,976 1
f6 100,030 346,834 29 1,886,924 23,917,392 8
f7 186,980 910,350 21 11,345,482 368,918,550 3
f8 16,882 94,208 18 316,128 28,311,552 1
f9 21,792 278,528 8 405,576 88,080,384 0.5
f10 291,735 602,112 48 11,814,069 122,028,032 10

Rm: Recursive / Uniform × 100 (%).

LUT memory, and thus their memory size is the sum of the
coefficients memory size and the LUT memory sizes.

Table 2 shows that, for all functions, NFGs based on
recursive segmentation require smaller memory size than
NFGs based on uniform segmentation, even though NFGs
based on recursive segmentation have a segment index en-
coder. For example, for XY/

√
X2 +Y 2, the 12-bit accuracy

NFG using recursive segmentation requires only 0.6% of
memory required by uniform segmentation.

To understand the relation between memory size and ac-
curacy, we designed NFGs for XY/

√
X2 +Y 2 with various

accuracies. Fig. 7 plots memory sizes of the NFGs for 4 to
16-bit accuracies. There are three curves:

1. a single look-up table in which the values assigned to X
and Y form an address and the contents of that address
is f (X ,Y ),
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Figure 7. Memory size versus accuracy for
XY/

√
X2 +Y 2.

2. NFG with recursive non-uniform segmentation, and

3. NFG with uniform segmentation.

Interestingly, for this function, the memory size of the
NFGs based on uniform segmentation increases in the same
way as memory size of a single look-up table. On the other
hand, the memory size of the NFGs based on recursive seg-
mentation increases much more slowly than the other two.
For 16-bit accuracy, the memory size of the NFG based on
recursive segmentation is only 0.09% of that of the NFG
based on uniform segmentation.

5.3. FPGA Implementation Results

We implemented 8-bit accuracy NFGs based on
the two architectures using the Altera Stratix FPGA



Table 3. FPGA implementation of 8-bit accuracy NFGs based on two architectures.
FPGA device: Altera Stratix (EP1S10F484C7)
Logic synthesis tool: Synplify Pro Ver. 8.8

Function Recursive segmentation Uniform segmentation
f (X ,Y ) #LEs #DSPs Freq. #stages Delay #LEs #DSPs Freq. #stages Delay

[MHz] [nsec.] [MHz] [nsec.]
sin(πX) ln(Y ) 347 4 149 9 60 – 0 – 1 –
sin(πX)

√
Y 206 2 149 7 47 58 1 183 3 16

sin(πXY ) 280 2 169 7 41 62 2 183 3 16
X4Y 5 280 2 169 7 41 57 2 183 3 16

1/
√

X2 +Y 2 552 4 169 9 53 – 0 – 1 –
XY/

√
X2 +Y 2 180 2 169 6 35 56 2 183 3 16

WaveRings 364 4 149 8 54 78 2 183 3 16
Gaussian 430 4 149 10 67 – 0 – 1 –√

X2 +Y 2 177 2 169 6 35 60 2 183 3 16
3
√

X3 +Y 3 189 2 169 6 35 56 0 343 3 9
Beta 439 4 169 9 53 – 0 – 1 –

–: NFGs cannot be mapped into the FPGA due to insufficient memory blocks.
#LEs: Number of logic elements. #DSPs: Number of 9-bit × 9-bit DSP units.
Freq. : Operating frequency. #stages : Number of pipeline stages.

(EP1S10F484C7). Table 3 compares the FPGA implemen-
tation results of the two architectures. In this table, the
columns “Delay” show the total delay time of each NFG
from the input to the output, in nanoseconds.

The NFGs based on uniform segmentation require fewer
pipeline stages and have shorter delay than the recursive
segmentation because they have no segment index encoder.
However, for four functions, the NFGs based on uniform
segmentation are not so easily implemented in an FPGA
due to excessive memory size. Table 3 shows that they can-
not be mapped into the FPGA due to insufficient memory
blocks. Note that NFGs that have only one pipeline stage in
Table 3 are realized with a single look-up table due to the
excessively many segments. On the other hand, for all func-
tions, the NFGs based on recursive segmentation achieve
high operating frequency.

It is important to note that certain two-variable functions
can be designed using 1. one-variable NFGs and 2. basic
operations like addition and multiplication. For example,
the first function in Table 1, sin(πX) ln(Y ), can be designed
using two one-variable NFGs, one realizing sin(πX) and
the other realizing ln(Y ). The outputs are then multiplied
together to realize the two-variable function. We are then
interested in the complexity of this realization compared to
the direct two-variable NFG design discussed earlier.

To understand the relative merits of using one versus
two-variable NFGs, we implemented the following three
functions from Table 1,

1. sin(πX) ln(Y ),

2. XY/
√

X2 +Y 2, and

3. WaveRings

using one-variable NFGs and basic operations. Each one-
variable NFG was realized by the method shown in [13],

Table 4. FPGA implementation of 8-bit accu-
racy NFGs designed using combination of
one-variable NFGs.

FPGA device: Altera Stratix (EP1S10F484C7)
Logic synthesis tool: Synplify Pro Ver. 8.8

Function Memory #LEs #DSPs Freq. #stages Delay
f (X ,Y ) [bits] [MHz] [nsec.]

sin(πX) ln(Y ) 7,104 234 4 149 7 47
XY/

√
X2 +Y 2 31,104 381 13 133 12 90

WaveRings 15,232 410 10 149 11 74
Memory : Total memory size needed for two-variable functions.

which is based on linear approximation and non-uniform
segment lengths. Table 4 shows the results.

Except for sin(πX) ln(Y ), the direct two-variable NFG
implementation requires fewer logic elements (LEs) and
DSPs than the one-variable implementation. Also, except
for sin(πX) ln(Y ), the direct two-variable implementations
have shorter delay. For XY/

√
X2 +Y 2 and WaveRings, the

delays of the two-variable implementations are only 39%
and 73% of those of the one-variable implementations, re-
spectively. Especially, in the case of XY/

√
X2 +Y 2, both

complexity and delay of the two-variable NFG are signifi-
cantly less than the one-variable NFG implementation. For
example, the X in the denominator, must be squared, added
to Y 2, the reciprocal square root taken, and then multiplied
by XY . This incurs a significant complexity and speed
penalty.

From these results, we can see that by designing two-
variable functions using one-variable NFGs, the required
memory size can be reduced significantly. However, de-
pending on functions, it can produce a slow implementation
because of additional logic such as multipliers. Also, com-



plicated hardware architecture using one-variable NFGs
makes error analysis harder, and it is harder to guarantee
output accuracy. This increases design time.

6. Concluding Remarks

We have proposed a design method and programmable
architectures for numerical function generators of two-
variable functions. To realize a two-variable function in
hardware, we partition the given domain of the function into
segments, and approximate the given function by a polyno-
mial in each segment. In this paper, we presented two planar
segmentation algorithms which partition a given domain of
two-variable function efficiently. To the best of our knowl-
edge, this is the first systematic design method based on
piecewise polynomial approximation for two-variable func-
tions. Experimental results show that for a complicated
function, our automatically generated NFG achieves higher
performance than manually designed NFG.

The algorithms and architectures presented in this paper
can be easily extended to functions with three or more vari-
ables.
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Appendix

The proof of Theorem 1 is based on a theorem proven
in [13]. Specifically, it was shown that

Theorem A [13] Let g(Z) be a k-valued monotone in-
creasing function. The function g(Z) can be realized by
the segment index encoder shown in Fig. 4(b) with at most
dlog2 ke rails and dlog2 ke Arails.

Theorem 1 Let seg f unc(X ,Y ) be a segment index func-
tion obtained by a recursive planar segmentation. The seg-
ment index function can be realized by the segment index
encoder shown in Fig. 4(b) with at most dlog2 ke rails and
dlog2 ke Arails, where k is the number of segments.

Proof: By forming a variable

Z = (xl−1 yl−1 xl−2 yl−2 . . . x−m y−m)

from X and Y , seg f unc(X ,Y ) obtained by the recursive
planar segmentation algorithm can be converted into a k-
valued monotone increasing function g(Z). Therefore, from
Theorem A, we have this theorem.


