
An Implementation of an Address Generator Using Hash Memories

Tsutomu Sasao and Munehiro Matsuura
Department of Computer Science and Electronics,

Kyushu Institute of Technology,
Iizuka 820-8502, Japan

Abstract

An address generator produces a unique address from 1
to k for the input that matches to one of k registered vectors,
and produces 0 for other inputs. This paper presents the
super hybrid method to design an address generator. The
hash memories realize about 96% of the registered vectors,
while the reconfigurable PLA realizes the remaining 4% of
the registered vectors. With the super hybrid method, we
can implement up to 20 times more registered vectors than
the conventional method that uses only logic elements of
an FPGA. Experimental results using lists of English words
show that the usefulness of the approach.

1. Introduction

Consider a set of k distinct binary vectors of n bits. An
address generation function produces a unique address from
1 to k for the input that matches a vector in the set, and
produces 0 for vectors outside the set. Address generation
functions are used in the IP filtering in the internet, pat-
tern matching, memory patching circuits, etc. Address gen-
erators often need to be reconfigured dynamically. Also,
the functions are often random. Thus, conventional design
methods are unsuitable for the design of address generators.

In this paper, we assume that the number of vectors k in
the set is much smaller than that of the maximal possible
input combinations 2n. For example, consider an address
generation function with n = 32 and k = 40, 000. The
straightforward way to implement this address generation
function is to store the truth table into a memory. How-
ever, this method require a memory with unrealistic size,
since the size of the memory is proportional to 2n. Another
method to implement the function is a programmable logic
array (PLA). Unfortunately, this method often requires ex-
cessive number of logic elements when it is implemented
by an FPGA.

In this paper, we present, the super hybrid method, an
efficient method to implement an address generation func-
tion using hash memories and a reconfigurable PLA.

This method is particularly suitable for FPGAs where
both logic elements and embedded memories are available.
In this method, hash memories implement about 96% of the
vectors, while the reconfigurable PLA implements the re-
maining 4% of the vectors. Theoretical analysis supports
the experimental results.

Besides address generation functions, this design method
can implement an n-variable function where the number of
non-zero outputs k is much smaller than 2n.

2. Address Generation Function

Definition 2.1 Consider a set of k binary vectors of n bits.
These vectors are registered vectors. For each registered
vector, assign unique integer from 1 to k. A registered vec-
tor table shows the relation of registered vectors and cor-
responding integers. An address generation function pro-
duces the corresponding integer if the input matches to a
registered vector, and produces 0 otherwise. k is the weight
of the address generation function.

In this paper, we assume that k is much smaller than 2n, the
total number of input combinations.

Example 2.1 Table 2.1 shows a registered vector table con-
sisting of 7 vectors. The corresponding address generation
function produces a 3-bit number (e.g., 001) to the integer
of the matched vector. When no entry matches to the input
vector, the function produces 000. (End of Example)

3. Reconfigurable PLA

An address generation function can be directly imple-
mented by a PLA. In a reconfigurable PLA, we can change
the logic data during the operation. The reconfigurable
PLA is quite similar to a reconfigurable content addressable

Table 2.1. Registered vector table
Address Vector

1 0010
2 0111
3 1101
4 0101
5 0011
6 1011
7 0001

memory (CAM)[2, 6]. Various method exist to implement
reconfigurable PLAs or CAMs. The register and gates ap-
proach uses a register to store the value of each bit. Fig.
3.1 shows a match circuit. A PLA or a CAM can be imple-
mented by adding an encoder consisting of OR gates. With
this approach, words of any width can be configured, and a
fast reconfiguration is possible. Suppose that the reconfig-
urable PLA is implemented by Altera Cyclone II FPGAs.
When the output part is fixed, to implement an n-input q-
output and k-vector PLA, we need

(�n

2
� + �2n − 1

3
�)k + �

k
2 − 1

3
�q (3.1)

LEs 1.

This formula was obtained by designing many reconfig-
urable PLAs of various sizes on a Cyclone II FPGA. Note
that the first term is related to the registers, the second term
is related to the comparators and AND gates, and the last
term is related to the encoder. This implies that we need
approximately 7

6nk LEs. 2 For example, when n = 40 and
k = 1730, we have q = �log2(1730 + 1)� = 11. Thus, the
number of LEs is

(20 + �80 − 1
3

�) · 1730 + 288 × 11q = 84, 478.

Table 3.1 shows the number os LE’s and M4Ks of Altera
Cyclone II FPGA. This shows that the reconfigurable PLA
approach requires more LEs than available, since the FP-
GAs contain at most 68,416 LEs. However, the FPGAs
contains many embedded memories (M4Ks) in addition to
the LEs. In the next section, we will show the method to
utilize these embedded memories.

1In Altera device [1], the LE (logic element) denotes the basic building
block consisting of a 4-input look-up table (LUT), a register and an addi-
tional carry and cascade logic. In Xilinx device, it corresponds to the LB
(logic block), which consists of a 4-input LUT, a register, and a carry logic.

2If we use the LUTs of a Xilinx FPGA, we can implement the address
generators more efficiently. This requires SRL16E macro [15].

AND

Figure 3.1. Match circuit by register and
gates.

Table 3.1. Altera Cyclone II FPGA.
LEs M4Ks

EP2C5 4,608 26
EP2C8 8,256 36
EP2C20 18,752 52
EP2C35 33,216 105
EP2C50 50,528 129
EP2C70 68,416 250

4. Hash-Based Design

From here, we are going to study a method to implement
an address generation function using memories.

Before explaining the super hybrid method, we introduce
the hybrid method, a simpler version of the super hybrid
method.

4.1. Hybrid Method

In the address generation function, the number of reg-
istered vectors k, is much smaller than 2n, the total num-
ber of the input combinations. Consider the set of linear
hash functions that maps 2n elements into 2p elements,
where 2p ≥ k + 1. By using linear hash functions yi =
xi ⊕ gi(X2), (i = 1, 2, . . . , p), we can reduce the 2n-
element space into a 2p-element space. With this, we can
implement the address generation function by using a p-
input memory instead of an n-input memory.

Unfortunately, collisions of data occur. That is, two or
more registered vectors are mapped into the same element.
In such cases, we implement only one registered vector by
the hash memory, and other registered vectors are imple-
mented by other circuit.

Let f(X1,X2) be the given address generation func-
tion. We can decompose it into f(X1,X2) = f̂1(Y1,X2) ∨
f2(X1,X2). As shown in Fig. 4.1, f̂1(Y1,X2) is imple-
mented by the hash network, the p-input hash memory,

Reconfigurable PLA

Hash AND
Hash

X1 Y1

X2

X1

X2

X2

Network
Memory

Comparator

AUX

f (X1, X2)

OR

Memory

Figure 4.1. Address generator using hybrid
method.

the AUX memory, and the comparator, while f2(X1,X2)
is implemented by the reconfigurable PLA. In the hybrid
method, we implement about 90% of the registered vec-
tors by the hash memory. Since the 2n-element space is re-
duced into the 2p-element space by a set of linear functions,
each output combination of the hash memory corresponds
to 2n−p input combinations.

1. When all the 2n−p input combinations are non-
registered, the hash memory stores zero for that input.

2. When only one combination is registered, and other
2n−p − 1 combinations are non-registered, the hash
memory stores the index of the registered vector.

3. If two or more input combinations are registered, the
hash memory stores an index of only one registered
vector.

Thus, when the output of the hash memory is non-zero, the
input vector can be registered or no-registered. To decide
whether it is registered or not, we use the AUX memory.
The AUX memory has q inputs and (n − p) outputs. It
stores the values of X2 for each registered vector. If the
input X2 is equal to the output of the AUX memory, then
the hash memory produces the correct output. Otherwise,
the output of the hash memory is wrong, so 0 is sent to the
output. In this way, f̂1(Y1,X2) is implemented by the hash
memory, the AUX memory, and the comparator.

4.2. A Method to Generate A Hash Func-
tion

A hash function is used to scatter the non-zero elements
of the address generation function uniformly. In this paper,
we use the following function Y1 = (y1, y2, . . . , yp), where
yi = xi ⊕ xj and xj ∈ {X2}.

4.3. Design of Address Generator

For an address generation function f(X1,X2) with
weight k, let f̂(Y1,X2) be the function that is obtained
by replacing X1 = (x1, x2, . . . , xp) with (y1 ⊕ xj1 , y2 ⊕
xj2 , . . . , yp ⊕ xjp

), where, p ≥ �log2(k + 1)�. For each

�a ∈ Bp, where B = {0, 1}, when f̂(�a,X2) has more
than one non-zero output, replace the non-zero elements
except for the minimum value by 0, to obtain the func-
tion f̂1(Y1,X2). Next, let f̂2(Y1,X2) be the function that
shows the remaining non-zero elements. Since, f̂1(Y1,X2)·
f̂2(Y1,X2) = 0, we have the relation: f̂(Y1,X2) =
f̂1(Y1,X2)∨ f̂2(Y1,X2). Note that the function f̂1(Y1,X2)
takes non-zero value for at most one non-zero element for
each Y1. Next, let

ĥ(Y1) = max
�b∈Bn2

f̂1(Y1,�b),

and realize ĥ(Y1) by the hash memory, where n2 denotes
the number of variables in X2. Since the value of ĥ(Y1) can
be different from the value of f̂1(Y1,X2), we check if it is
correct or not by using the AUX memory. Also, by trans-
forming xi = yi⊕xj , we generate the function f2(X1,X2)
from f̂2(Y1,X2). Finally, realize f2(X1,X2) by a reconfig-
urable PLA.

Theorem 4.1 When Y1 = (y1, y2, . . . , yp), where yi =
xi ⊕ xj , for xj ∈ {X2}, is used as the hash function, only
the outputs for X2 are necessary in the AUX memory and
the comparator in Fig.4.1.

Example 4.1 Table 4.1 is a decomposition chart of a 6
variable function f(X1,X2) with weight k = 7. In this
function, transform the variables X1 = (x1, x2, x3) into
Y1 = (y1, y2, y3) = (x1 ⊕ x6, x2 ⊕ x5, x3 ⊕ x4). The
decomposition table of the hashed function f̂(Y1,X2) is
shown in Table 4.2. In the hashed function, the columns
of the original truth tables are permutated. Also, each
row has a different permutation. In the original table,
three columns for (x1, x2, x3) = (0, 0, 0), (0, 1, 0), (0, 0, 1)
have two non-zero elements. On the other hand, in the
decomposition table in Table 4.2 for the hashed function
ĥ(Y1,X2), only one column (y1, y2, y3) = (0, 1, 0) has two
non-zero elements. Let f̂1(Y1,X2) be the function where
the non-zero element 4 is replaced by 0. The decompo-
sition chart is shown in Table 4.3. Table 4.4 shows the
decomposition chart of the function f̂2(Y1,X2) that is re-
alized by the reconfigurable PLA. In this case, the func-
tion has only one non-zero element. f̂1(Y1,X2) is imple-
mented by the hash memory shown in Table 4.5 and the
AUX memory shown in Table 4.6. The output of the hash
memory f̂(Y1) shows the non-zero value of the function
f̂1 for the column Y1 = (y1, y2, y3). The AUX memory

x4 x6x5

z

3

z 2

z

1 f1

f 2

f 3y1

y2

y3

x1

x1

x6

x6

x2

x2

x3

x3

x4

x4

x5

x5

Hash
Memory

AUX

Comparater

Memory

Figure 4.2. Realization of a 6-variable func-
tion by a hybrid method.

Table 4.1. Decomposition chart for f(X1,X2).

0 0 0 0 1 1 1 1 x3

0 0 1 1 0 0 1 1 x2

0 1 0 1 0 1 0 1 x1

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
010 1 0 2 0 3 0 0 0
011 0 0 0 0 4 0 0 0
100 5 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 6
111 0 0 7 0 0 0 0 0

x6x5x4

shown in Table 4.6 decides if the output is zero or not.
The function that is implemented by the reconfigurable PLA
has non-zero output 4. The corresponding input values are
(x1, x2, x3, x4, x5, x6) = (0, 0, 1, 1, 1, 0). Fig. 4.2 shows
the whole network for function f . The AUX memory and
comparator check if (x4, x5, x6) is the input that produces
the non-zero output. The non-zero output is 4, and its binary
representation is (1, 0, 0). This is implemented by ORing
the most significant bit of the AND gates. (End of Example)

Table 4.2. Decomposition chart for f̂(Y1,X2)
(hashed function).

0 0 0 0 1 1 1 1 y3

0 0 1 1 0 0 1 1 y2

0 1 0 1 0 1 0 1 y1

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
010 2 0 1 0 0 0 3 0
011 0 0 4 0 0 0 0 0
100 0 5 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 6 0 0 0
111 0 0 0 0 0 7 0 0

x6x5x4

Table 4.3. Decomposition chart for f̂1(Y1,X2).

0 0 0 0 1 1 1 1 y3

0 0 1 1 0 0 1 1 y2

0 1 0 1 0 1 0 1 y1

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
010 2 0 1 0 0 0 3 0
011 0 0 0 0 0 0 0 0
100 0 5 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 6 0 0 0
111 0 0 0 0 0 7 0 0

x6x5x4

5. Numbers of Registered Vectors Realized by
Hash Memory

In this part, we assume that the non-zero elements in the
address generation function are uniformly distributed in the
decomposition chart. In this case, we can estimate the frac-
tion of registered vectors realized by the hash memory.

Theorem 5.1 Let f be an n-variable address generation
function with weight k, and the non-zero elements be uni-
formly distributed in the decomposition chart. Then, the
fraction of registered vectors realized by the hash memory
shown in Fig. 4.1 is given by

δ � 1 − 1
2
(

k

2p
) +

1
6
(

k

2p
)2,

Table 4.4. Decomposition chart for f̂2(Y1,X2)
0 0 0 0 1 1 1 1 y3

0 0 1 1 0 0 1 1 y2

0 1 0 1 0 1 0 1 y1

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
010 0 0 0 0 0 0 0 0
011 0 0 4 0 0 0 0 0
100 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0

x6x5x4

Table 4.5. Function ĥ(Y1) realized by the hash
memory.

y3 0 0 0 0 1 1 1 1
y2 0 0 1 1 0 0 1 1
y1 0 1 0 1 0 1 0 1

ĥ(Y1) 2 5 1 0 6 7 3 0

where p = |Y1| denotes the number of bound variables in
the decomposition chart for f(Y1,X2), and k < 2p.

For example, when k
2p = 1

4 , we have δ � 0.8854, and
when k

2p = 1
2 , we have δ � 0.792.

6. Super Hybrid Method

6.1. Principle

In the hybrid method, about 90% of the registered vec-
tors are implemented by the hash memory and the remain-
ing 10% of the registered vectors are implemented by the

Table 4.6. Contents of the AUX memory
z3z2z1 x4 x5 x6

000 0 0 0
001 0 1 0
010 0 1 0
011 0 1 0
100 0 0 0
101 0 0 1
110 0 1 1
111 1 1 1

)2,1(X

1X

2X

1X

2X

1X

2X

X,f

X2

X2

Reconfigurable PLA

OR

Hash
Network

1

Y1 f 1

f 2

f 3

Hash
Memory

1

Hash
Memory

2

Comparator

Comparator

AND

,

,

,

,
Hash

Network
2

Y1
AUX

Memory 2

AUX
Memory 1

AND

Figure 6.1. Address generator using super
hybrid method.

PLA. When we use two hash memories, we can implement
about 96% of the registered vectors, and the remaining 4%
of the registered vectors are implemented by the PLA. Such
implementation is called super hybrid method. The super
hybrid method shown in Fig. 6.1 is more complicated than
the hybrid method, but requires smaller memories.

Hybrid Method
The hash memory has (q + 2) inputs and q outputs. The
AUX memory has q inputs and (n− q − 2) outputs. There-
fore, the total amount of memory is q · 2q+2 + (n− q − 2) ·
2q = (4n + 12q − 8) · 2q−2.

Super Hybrid Method
The first hash memory has (q+1) inputs and q outputs. The
first AUX memory has q inputs and (n−q−1) outputs. The
second hash memory has (q−1) inputs and (q−2) outputs.
The second AUX memory has (q−2) inputs and (n−q+2)
outputs.

Therefore, the total amount of memory is q ·2q+1 +(n−
q − 1) · 2q + (q − 2) · 2q−1 + (n − q + 2) · 2q−2 = (5n +
5q − 6) · 2q−2.

This implies that when n ≤ 7 log2(k + 1)− 2, the super
hybrid method requires smaller amount of memory.

Theorem 6.1 By using the hybrid method shown in Fig.
4.1, we can implement about 90% of the registered vectors
by the hash and AUX memories. By using the super hybrid
method shown in Fig. 6.1, we can implement about 96% of
the registered vectors by the hash and AUX memories.

6.2. Example

Example 6.1 Consider the case of n = 40 and k = 1730.
In this case, q = �log2(k + 1)� = �log2(1730 + 1)� = 11.

Reconfigurable PLA.
The number of vectors realized by the reconfigurable PLA is

1730. From equation (3.1), the number of LEs to implement
the reconfigurable PLA is 84,478.
Hybrid Method.
From Theorem 5.1, we have

δ � 1 − 1
2
(

k

2p
) +

1
6
(

k

2p
)2

= 1 − 1
2
(
1730
213

) +
1
6
(
1730
213

)2 � 0.901.

The hash memory has p = 13 inputs and q = 11 outputs.
The AUX memory has q = 11 inputs and r = n − p = 27
outputs. The size of the hash memory is 213 × 11 = 90, 112
(bits). The size of the AUX memory is 211 × 27 = 55, 296
(bits). Thus, the total amount of memory is 145, 408 (bits).
The number of vectors realized by the reconfigurable PLA
is 173.

Super Hybrid Method.
From Theorem 5.1, we have

δ � 1 − 1
2
(

k

2p
) +

1
6
(

k

2p
)2

= 1 − 1
2
(
1730
212

) +
1
6
(
1730
212

)2 � 0.8185

The first hash memory has p1 = 12 inputs and q1 = 11
outputs. The first AUX memory has q1 = 11 inputs and r1 =
n−p1 = 27 outputs. The second hash memory has p2 = 10
inputs and q2 = 9 outputs. The second AUX memory has
q2 = 9 inputs and r2 = n − p2 = 30 outputs. The size of
the first hash memory is 212 × 11 = 45, 056 (bits). The size
of the first AUX memory is 211 × 28 = 57, 344 (bits). The
size of the second hash memory is 210 × 9 = 9, 216 (bits).
The size of the second AUX memory is 29 × 30 = 15, 360
(bits). Thus, the total amount of memory is 126, 976 (bits).
The number of vectors realized by the reconfigurable PLA
is 43.

Thus, for this problem, the super hybrid method requires
smaller amount of hardware. (End of Example)

A problem in the super hybrid method is that the sec-
ond hash memory has only q − 2 outputs. Thus, the indices
of the registered vectors in the second hash memory should
be smaller than or equal to 2q−2 − 1. The first hash mem-
ory stores registered vectors whose indices are greater than
2q−2.

7. Experimental Results

7.1. List of English Words

To demonstrate the usefulness of the design method, first
we realized lists of frequently used English words. Here, we
use three kinds of English word lists: List 1, List 2, and List
3. The numbers of letters in the word lists are at most 13, but

Table 7.1. Realization of English word Lists
by hybrid method.

List 1 List 2 List 3
of words: k 1730 3366 4705
of inputs: n 40 40 40
of outputs: q 11 12 13
of inputs for the hash
function: p 13 14 15
of columns with only one
non-zero element 1389 2752 3980
of columns with two or
more non-zero elements 165 293 351
of registered vectors not
realized by hash memory 176 321 374

we only consider the first 8 letters. For the English words
consisting of fewer than 8 letters, we append blanks to the
end of words to make them 8-letter words. Each English
alphabet letter is represented by 5 bits. Thus, each English
word is represented by 40 bits. The number of words in the
lists are 1730, 3366, and 4705, respectively. In each word
list, each English word has a unique index, an integer from
1 to k, where k = 1730 or 3360 or 4705. The numbers of
bits for the indices are 11, 12, and 13, respectively.

The number of inputs for the hash function is �log2(k +
1)� + 2. List 1 consists of k = 1730 words. The number
of bits for the index is q = �log2(1 + k)� = �log2(1 +
1730)� = 11. The number of bound variables is p = q+2 =
13. The number of columns in the decomposition chart is
2p = 213 = 8192. The number of columns that has only
one non-zero element is 1389. The number of columns that
has two or more non-zero elements is 165. The number of
registered vectors that are not realized by the hash table is
176. In other words, about 90% of the registered vectors are
realized by the hash memory, and the remaining 10% of the
registered vectors are realized by the reconfigurable PLA.
Table 7.1 shows the design results for three English word
lists by the hybrid method.

Table 7.2 compares the amount of hardware for recon-
figurable PLA, the hybrid method, and the super hybrid
method. It shows that the super hybrid method efficiently
uses both LEs and M4Ks of the FPGA. In the super hy-
brid method, the number of vectors realized by the recon-
figurable PLA is smaller than 4% of the registered vectors.
This is because we optimized hash functions.

7.2. Randomly Generated Functions

Next, we generated address generation functions with
the same sizes by pseudo-random numbers. We did the
similar experiments for List 2 and List 3. The experimen-

tal results using randomly generated functions and English
word lists do not have much difference with the theoreti-
cal results obtained in Chapter 5. This shows that the hash
function generated by the hash network effectively scatters
the non-zero elements in the decomposition charts.

7.3. IP Address Table

To verify the effectiveness of the method, we also used IP
addresses of computers that accessed our web cite in a cer-
tain period. Table 1 contains 1730 addresses, Table 2 con-
tains 3366 addresses, and Table 3 contains 4588 addresses.
The number of inputs are all 32, but the number of outputs
for Table 1, Table 2, and Table 3 are 11,12, and 13, respec-
tively. Also, in this case, there were not much differences
among the experimental data using real address tables, the
data obtained from the random address tables, and the data
obtained by analytical results in Chapter 5. (Experimental
reuslts are omitted.)

8. Conclusions and Comments

In this paper, we presented the super hybrid method to
realize an address generation function. In the super hy-
brid method, the address generation function f is decom-
posed into three non-overlapping address generation func-
tions: f(X1,X2) = f̂1(Y1,X2)∨f̂2(Y ′

1 ,X2)∨f3(X1,X2).
In this case, f̂1(Y1,X2), f̂2(Y ′

1 ,X2), and f3(X1,X2) rep-
resent about, 80%, 16 %, and 4% of the registered vectors,
respectively. The functions f̂1(Y1,X2) and f̂2(Y1,X2) are
implemented by hash memories, AUX memories and com-
parators, while f3 is implemented by a reconfigurable PLA.
With the super hybrid method, we can implement up to 20
times more vectors than the conventional method that uses
only LEs of an FPGA.

Implementations of logic functions with LUTs and em-
bedded memories have been also developed [3, 7, 14].
However, these methods produce dedicated circuits for
given functions. Thus, even a slight change of a logic func-
tion will produce a circuit with different structure. How-
ever, the presented method produces a circuit where a slight
change of a logic function can be allowed by the modifica-
tion of the contents of the memories.

Acknowledgments

This research is supported in part by the Grants in Aid for
Scientific Research of JSPS, and the grant of Kitakyushu
Innovative Cluster Project. Discussion with Prof. Jon T.
Butler improved English presentation.

Table 7.2. Amount of hardware for English
word lists.

Size of Lists
List 1 List 2 List 3

of inputs n 40 40 40
of outputs q 11 12 13
of vectors k 1730 3366 4705

Reconfigurable PLA
List 1 List 2 List 3

of LEs 84,478 164,934 231,340

Hybrid Method
List 1 List 2 List 3

of inputs for hash memory p 13 14 15
Size of hash memory q2p 90,112 196,608 425,984
Size of AUX memory r2q 55,296 106,496 204,800
Total amount of
memory (bits) 145,408 303,104 630,784
of vectors realized by
reconfigurable PLA 176 321 374
of M4Ks 36 74 154
of LEs 13,278 24,888 29,892

Super Hybrid Method
List 1 List 2 List 3

of inputs for hash memory 1 p1 12 13 14
of inputs for hash memory 2 p2 10 11 12
Size of hash memory 1 q12

p1 45,056 98,304 212,992
Size of AUX memory 1 r12

q1 57,344 110,592 212,992
Size of hash memory 2 q22

p2 9,216 20,480 40,960
Size of AUX memory 2 r22

q2 15,360 2,969 28,672
Total amount of
memory (bits) 126,976 232,345 495,616
of vectors realized by
reconfigurable PLA 30 61 42
of M4Ks 32 64 121
of LEs 2,426 4,889 3,560

References

[1] http://www.altera.com

[2] ALTERA, “Implementing high-speed search applications
with Altera CAM,” Application Note 119, Altera Corpora-
tion, July 2001.

[3] J. Cong and K. Yan, “Synthesis for FPGAs with embed-
ded memory blocks”, In Proc. of the 2000 ACM/SIGDA 8th
International Symposium on Field Programmable Gate Ar-
rays, pp. 75-82, ACM Press NY, 2000, Monterey, California.

[4] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor,
“Longest prefix matching using Bloom filters,” ACM SIG-
COMM’03, August 25-29, 2003, Karlsruhe, Germany.

[5] J. Ditmar, K. Torkelsson, and A. Jantsch, “A reconfig-
urable FPGA-based content addressable memory for inter-
net protocol characterization,” Proc. FPL2000, LNCS 1896,
Springer, 2000, pp. 19-28.

[6] S. Guccione, D. Levi, and D. Downs,“A reconfigurable con-
tent addressable memory,” Lecture Notes in Computer Sci-
ence, Springer-Verlag, Berlin, Volume 1800,May 2000. Par-
allel and Distributed Processing, p.882.

[7] S. Krishnamoorthy and R. Tessier, “Technology mapping al-
gorithms for hybrid FPGAs containing lookup tables and
PLAs”, In IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 22, No. 5, 2003, pp.
545-559.

[8] K. McLaughlin, N. O’Connor, and S. Sezer, “Exploring
CAM design for network processing using FPGA technol-
ogy,” Advanced International Conference on Telecommuni-
cations and International Conference on Internet and Web
Applications and Services (AICT-ICIW’06), p. 84, 19-25,
Feb. 2006.

[9] G. Nilsen, J. Torresen and O. Sorasen, “A variable word-
width content addressable memory for fast string matching,”
NorChip 2004, pp. 214- 217.

[10] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable
memory (CAM) circuits and architectures: A tutorial and
survey,” IEEE Journal of Solid-State Circuits, vol. 41, no. 3,
pp. 712-727, March 2006.

[11] T. Sasao, Switching Theory for Logic Synthesis, Kluwer
Academic Publishers, 1999.

[12] T. Sasao, “Design methods for multiple-valued input ad-
dress generators,”(invited paper) International Symposium
on Multiple-Valued Logic (ISMVL-2006), Singapore, May
2006.

[13] T. Sasao, “A Design method of address generators using
hash memories,” IWLS-2006, Vail, Colorado, U.S.A, June
7-9, 2006.

[14] S. J. E. Wilton, “SMAP: Heterogeneous technology map-
ping for FPGAs with embedded memory arrays,” In Proc.
o f the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 171-178, 1998.

[15] Xilinx,“Designing flexible, fast CAMs with Virtex family
FPGAs,” Application Note, XAPP203, Sept. 23, 1999.

