
A Method to Decompose Multiple-Output Logic Functions

Tsutomu Sasao
Kyushu Institute of Technology

680-4 Kawazu
Iizuka 820-8502, Japan

Munehiro Matsuura
Kyushu Institute of Technology

680-4 Kawazu
Iizuka 820-8502, Japan

ABSTRACT
This paper shows a method to decompose a given multiple-
output circuit into two circuits with intermediate outputs.
We use a BDD for characteristic function (BDD for CF)
to represent a multiple-output function. Many benchmark
functions were realized by LUT cascades with intermediate
outputs. Especially, adders and a binary to BCD converter
were successfully designed. Comparison with FPGAs is also
presented.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
Cascade, BDD, Characteristic function, FPGA

1. INTRODUCTION
Functional decomposition of logic functions [1] has wide

applications, especially in the design of FPGAs [16]. Bi-
nary decision diagrams are extensively used to design such
networks [5, 7, 3]. When a logic function f can be repre-
sented as f(X1, X2) = g(h(X1)X2), we can design networks
for h(X1) and g(h, X2) independently to implement the de-
composed network shown in Fig. 1. By applying such de-
compositions iteratively, we can design LUT type FPGAs.
Design of an LUT network for single-output logic function
using functional decomposition is relatively easy. However,
the design of LUT networks for multiple-output functions is
not so simple. Various methods have been proposed [4, 5,
10, 12, 13, 15].

In this paper, we present a new method to decompose
a multiple-output function. It uses a binary decision dia-
gram for characteristic function (BDD for CF) [2]. This
method efficiently finds the decomposition with intermedi-
ate outputs shown in Fig. 2. A recursive application of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’04, June 8–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

X1

X2
fG

H

Figure 1: Conventional
Functional Decomposi-
tion.

X1

Y1

X2
Y2G

H

Figure 2: Functional De-
composition with Inter-
mediate Outputs.

LUT LUT LUT LUT

Figure 3: LUT Cascade with Intermediate Outputs.

method produces an LUT cascade with intermediate out-
puts as shown in Fig. 3. The LUT cascade [10] has a regular
structure and is easy to design. It is a promising method
to design deep sub-micron LSIs, since the interconnections
are limited to the adjacent cells, and thus, the prediction of
delay is easy. In a conventional FPGA, the delay of intercon-
nections is much larger than that of logic, and this is one of
the fundamental limitations on FPGA speed. On the other
hand, in LUT cascades, the area for the interconnections is
much smaller than conventional FPGAs.

2. DEFINITIONSAND BASIC PROPERTIES

Definition 1. Let F = (f0(X), f1(X), . . . , fm−1(X)) be
a multiple-output function. Let X = (x1, x2, . . . , xn) be the
input variables, and Y = (y0, y1, . . . , ym−1) be the set of
variables that denotes the outputs. The characteristic
function of a multiple-output function is defined as

χ(X, Y) =
m−1�
i=0

(yi ≡ fi(X)).

The characteristic function of an n-input m-output func-
tion is a two-valued logic function with (n+m) inputs. It has
input variables xi (i = 1, 2, . . . , n), and output variables yi

for each output fi. Let B = {0, 1}, �a ∈ Bn, F (�a) = (f0(�a),

f1(�a), . . . , fm−1(�a)) ∈ Bm, and �b ∈ Bm. Then, the charac-
teristic function satisfies the relation

χ(�a,�b) =

�
1 (If �b = F (�a))
0 (Otherwise).

Definition 2. The support of a function f is the set of
variables on which f actually depends.

Definition 3. The BDD for CF for a multiple-output
function F = (f0, f1, . . . , fm−1) is the ROBDD for the char-
acteristic function χ. In this case, we assume that the root
node is at the top of the BDD, and variable yi is below the
support of fi, where yi is the variable representing fi.

Definition 4. In a BDD for CF, for each node that rep-
resents an output yi, remove the node and the edge pointing
the constant 0 node, and redirect the edge to the other child
of yi. Apply this operation to all the nodes that represent
the output yi. This operation is denoted by removal of the
output variables yi by shorting.

Let the height of the root node be the total number of
variables, and let the height of the constant nodes be 0.

Definition 5. The width of a BDD at height k, is
the number of edges crossing the section of the BDD between
variables zk and zk+1, where edges incident to the same node
are counted as one.

The next theorem is the key result of the paper. It is
similar to that of [5], but finds a decomposition with inter-
mediate outputs as shown in Fig. 2.

Theorem 1. Let (X1, Y1, X2, Y2) be the variable ordering
of the BDD for CF, where X1 and X2 denote the disjoint
ordered sets of input variables, and Y1 and Y2 denote the dis-
joint ordered sets of output variables. Let n2 be the number
of variables in X2, and m2 be the number of variables in Y2.
Let W be the width of the BDD for CF at height n2 + m2.
When counting the width W , ignore the edges that connect
the nodes of output variables and the constant 0. Suppose
that the multiple-output function is realized by the network
shown in Fig. 2. Then, the necessary and sufficient number
of connections between two blocks H and G is �log2 W�.

Proof. By the definition of the BDD for CF, it is clear
that we can realize functions for Y1 and Y2 by the network
shown in Fig. 2 . In the BDD for CF, remove the nodes
that represent the outputs Y1 by shorting, and we have the
BDD for CF that represents the multiple-output functions
Y2. Note that this operation does not change the width
of the BDD. Let W be the width of the BDD for CF at
the height (n2 + m2) after the removal of the output vari-
ables Y1 by shorting. Consider the decomposition chart for
the decomposition g(h(X1), X2). The column multiplicity
is equal to W . In other words, if we ignore the outputs in
Y1, �log2 W� lines are necessary and sufficient to realize the
functions in Y2. Since Y1 depends only on X1 and does not
influence on the number of connections between H and G,
the necessary and sufficient number of wires between net-
works H and G is �log2 W�.

Let (X1, Y1, X2, Y2) be the variable ordering of a BDD
for CF, where Y1 = (y0, y1, . . . , yk−1). Realize functions
fi(X1) (i = 0, 1, . . . , k − 1) by the network H in Fig. 2.
Let W be the width of the BDD for CF at the height
n2 + m2. To W nodes, assign different binary numbers of
u = �log2 W� bits. Let h1, h2, . . . , hu be the functions real-
ized by the lines that connect two blocks. Then, the output
functions (fk, fk+1, . . . , fm−1) can be represented as func-
tions of (h1, h2, . . . , hu, X2). Also, the BDD for CF can be
represented as shown in Fig. 4.

h1
h2

hu

W

0 1

X2

Y2

Figure 4: Realization of Y2 by BDD for CF.

Example 1. Let us design the two-bit adder (ADR2).
The relations of inputs and outputs of ADR2 are:

a1 a0

+) b1 b0
s2 s1 s0

Thus, we have,

s0 = a0 ⊕ b0

s1 = a0b0 ⊕ (a1 ⊕ b1)

s2 = a0b0(a1 ∨ b1) ∨ a1b1.

Consider the partition of the variables: X1 = (a0, b0), Y1 =
(s0), X2 = (a1, b1), and Y2 = (s1, s2). In this case, we use
the variable ordering (X1, Y1, X2, Y2) = (a0, b0, s0, a1, b1, s1, s2).
Fig. 5(a) shows the BDD for CF. Let the partition the vari-
ables be X = (XA, XB), where XA = (X1, Y1), and XB =
(X2, Y2). Then, the width W of the BDD at the height four
is two. Thus, only one line is necessary to connect two blocks
H and G, since �log2 W� = 1.

Note that s0 is a function of variables in X1. Next, intro-
duce an intermediate variable h1, and replace the top part
of the BDD with the decision tree that has h1 as the control
variable (Fig. 5(b)). Then, as shown in Fig. 5(c), construct
the MTBDD that has h1, a1, and b1 as inputs, and s1, and
s2 as outputs. Finally, we can obtain the network for adr2
as shown in Fig. 6. (End of Example)

3. OUTLINE OF THE DESIGN ALGORITHM
FOR LUT CASCADES

In this section, we briefly describe a method to design an
LUT cascade by using a BDD for CF.

By iterative application of functional decompositions, we
can generate LUT cascades. Let the number of inputs of an
LUT be k ≥ 3. Given a multiple-output function, generate
the BDD for CF, and minimize it. Then, select k input vari-
ables that are near to the root node. Next, obtain W , the
width of the BDD. In this case, ignore the edges that connect
nodes for the outputs and the constant 0. Then, introduce
u = �log2 W� intermediate variables. Next, assign binary
codes of u bits to the W sub-functions. In this case, we
use the simplest strategy: For each sub-function, assign one
binary code; do not consider don’t care; and assign unused
codes to a certain sub-function. By using an LUT, realize
k-input (u +w)-output function, where w denotes the num-
ber of output variables in the selected variables. Replace k
variables by u intermediate variables, and re-construct the
BDD for CF. Then, again, select k-variables that are near

a0

b0 b0

s0

a1

s1

s2

s0s0

a1

b1 b1b1b1

s1s1

s2

s1

00

0

0

0

0

0

1
0

1

0

0

0

0

0

0

0

0

0

0
0

0

0
0 0

0

0

10

1

11

1 1

1

1

01

1
1

1

1

1

1

1
1

1

(a) BDD for CF representing adder.

h1

a1

s1

s2

a1

b1 b1b1b1

s1s1

s2

s1
0

0

0 0

1
0

1

0

0

0

0

0

0

0

0
0 0

0

0

10

1

1

1

01

1
1

1

1

1

1
1

1

(b) BDD for CF representing network G.

h1

a1a1

b1 b1b1b1

0

0

0

0

0
0 0

1

1

11

1

1
1

s1
s2

0
0

s1
s2

1
0

s1
s2

0
1

s1
s2

1
1

(c) MTBDD representing network G.

Figure 5: Design of two-bit adder.

s0 s1 s2

h1

a0 b0 a1 b1

Figure 6: Two-bit adder (ADR2).

the root node, and do similar operations until all the vari-
ables are selected.

4. DETAILED DESIGN ALGORITHM FOR
LUT CASCADES

For practical multiple-output functions, BDDs for CFs are
often too large to represent all the outputs at one time. Also,
even if the BDD for CF is stored in a memory of a computer,
it can be too large to be realized by an LUT cascade. In
such a case, we partition the outputs into groups, and for
each group of outputs, we design an LUT cascade to realize
the functions in the group.

We partition the outputs so that each set of outputs de-
pends on as small number of input variables as possible.

This will reduce the size of the BDD for CF. Thus, at first,
by using Algorithm 1, we reorder the output functions so
that the support will increase as slowly as possible. Second,
we find an ordering of the input and the output variables by
Algorithm 2 to construct a BDD for CF. Third, we generate
cascade from the BDD for CF by Algorithm 3. And, finally,
we partition the outputs into groups by Algorithm 4. For
each group, we increase the number of outputs one by one
while the functions are realizable with an LUT cascade. All
the algorithms in this section are heuristic ones.

4.1 Ordering of Outputs

Algorithm 1. (Ordering of the Output Functions)
Let (f0, f1, . . . , fm−1) be the initial order of the output func-
tions.

1. i← 0, j ← 0, minT ←∞, minorder ← Initial order.

2. Exchange the positions for fi and fj.

3. Compute the value of T ←
m−1�
k=0

|
k�

l=0

sup(fl)|, where

sup(fl) denotes the support of fl.

4. If T < minT , then minT ← T , and minorder ←
Current output order.

5. If j < m− 1, then j ← j + 1, and go to Step 2.

6. If j ← 0 and i < m− 1, then i← i+ 1, and go to Step
2.

7. If minT is updated, then i← 0, and go to Step 2. Else
let minorder be the output order, and terminate.

In Step 3, T denotes the number of variables in the support
of the group of functions. Algorithm 1 tries to find the
ordering of the outputs that increases the sizes of supports
as slowly as possible.

4.2 Ordering of Variables
By using the BDD for CF, we decompose the function

in the form g(h1(Z1), h2(Z1), . . . , hu(Z1), Z2), where Z1 and
Z2 denote sets of input and output variables.

If {Z1} includes any output variables, then the block H
in Fig. 2 produces external outputs that correspond to the
output variables. This will reduce the number of inputs
to the block G in Fig. 2. Therefore, as an initial variable
ordering of the BDD for CF, we try to find the ordering so
that many output variables are near to the root nodes, while
keeping the width of the BDD smaller than a certain value.

Algorithm 2. (Ordering of the Variables)

1. By Algorithm 1, obtain the output order (f0, f1, . . . , fm−1).

2. Let sup(fi) be the support of the function fi, and yi be
the output variables for fi.

3. From the root node of the BDD, let the ordering of the
variables be sup(f0), y0, sup(f1)−sup(f0), y1, sup(f2)−
sup(f1)−sup(f0), y2, . . . , sup(fm−1)−sup(fm−2)−· · ·−
sup(f0), ym−1. In this case, the variable ordering within
sup(fi) is the same as one in the minimum SBDD.

We use this ordering as an initial variable ordering of the
BDD for CF, and optimize the variable order by sifting al-
gorithm [9], where the sum of widths is used as the cost
function of the BDD.

4.3 Derivation an LUT Cascade from a BDD
for CF

In this part, we show an algorithm to derive an LUT from
a BDD for CF. Let k be the maximum number of inputs
for an LUT, and r be the maximum number of outputs of
an LUT. Let (Z1, Z2) be a partition of variables, and let
the given function be decomposed as f(Z) = g(h1(Z1), . . . ,
hu(Z1), Z2). Let Z1 = (X1, Y1) and Z2 = (X2, Y2), where
X1 and X2 denote the sets of input variables, and Y1 and
Y2 denote the sets of output variables. Let W be the width
of the BDD at the height |Z2|. If |X1| ≤ k, and if (Y1 +
�log2 W�) ≤ r, then the function can be realized by an LUT
cascade, where {Z1} is a bound set.

Algorithm 3. (Derivation of an LUT Cascade from a
BDD for CF)
This algorithm finds a partition of the set of variables for
CF, when the variable order and widths of BDD for CF are
given. Let F = (f0, f1, . . . , fm−1) be a given multiple-output
function; Z be the support of CF; k be a maximum number
of inputs for an LUT; r be a maximum number of outputs
for an LUT; zi be the variable whose height is i; and {Zt},
{Za}, {Zb}, {Zc}, {Zin}, and {Zout} be sets of variables.

1. i← |Z |, Zt ← Z, {Zin} ← φ, {Zc} ← φ, l← 1.

2. While {Zt} �= φ, do Steps (a)–(d).

(a) j ← i− 1, top← j, {Zout} ← φ.

(b) While i > 0 and |Zin| ≤ k, do Steps i–iv.

i. If zi is an output variable for CF then {Zout} ←
{Zout} ∪ {zi}, else {Zin} ← {Zin} ∪ {zi}.

ii. ui ← �log2 wi�, where wi is width of BDD for
CF at the height i.

iii. If ui < k and |Zout| + ui ≤ r then j ← i and
{Za} ← {Zin} ∪ {Zout}.

iv. i← i− 1.

(c) If j = top then the function cannot be realized by
an LUT cascade, and terminate.

(d) {Zb} ← {Zt} − {Za}, {Zl} ← {Za} − {Zc}. Let
{H} be a set of intermediate variables for decom-
position g(h(Za), Zb). {Zt} ← {Zb}, {Zin} ←
{H}, i← j − 1, {Zc} ← {H}, l← l + 1.

3. For the partition (Z1, Z2, . . . , Zl−1), realize an LUT
cascade.

Let {Z1} be the bound set, and µ be the column multiplicity
of the decomposition. Then, the decomposition of a BDD
for CF produces u = �log2 µ� intermediate variables, and
possibly some external outputs variables that are contained
in {Z1}.
4.4 Derivation of an LUT Cascade for a Multiple-

Output Function
Here, we will give an algorithm to derive an LUT cas-

cade for a given multiple-output function. Note that this
algorithm partitions the outputs into groups, then generate
BDD for CF for each group, and realize each group by an
LUT cascade.

Algorithm 4. (Derivation of a set of LUT Cascades for
a Multiple-Output Function)

8
3

3

2

2
6

3

3
5

1

3
3

2

Figure 7: LUT Cascade for vg2.

x10y10x11y11x12y12 x13y13x14y14x15y15 x16 y16x7y7x8y8x9y9x4y4x5y5x6y6x1y1x2y2x3y3

c0 c16

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

Figure 8: LUT Cascade for 16-bit adder for k = 7.

1. By Algorithm 1, obtain the order of the output func-
tions, and let it be (f0, f1, . . . fm−1). Let Fa be a set
of functions.

2. i← 0, Fa ← φ.

3. Construct a BDD for CF that represents Fa ∪ {fi},
and optimize the variable ordering. Use Algorithm 2
to find an initial ordering of the variables.

4. By using Algorithm 3, try to realize an LUT cascade.

5. When the cascade is realizable. If i = m, then generate
the LUT for Fa and terminate, else Fa ← Fa ∪ {fi},
i← i + 1, and go to Step 3.

6. When the cascade is not realizable. If |Fa| = 0, then
the function cannot be realized by LUT cascades, and
terminate. Else, produce the LUT cascade for Fa.
Fa ← φ, and go to Step 3.

5. EXPERIMENTAL RESULTS

5.1 LUT Cascade
We implemented Algorithm 4 in the C programming lan-

guage, and designed LUT cascades for selected MCNC89
benchmark functions. Table 1 shows the experimental re-
sults. In the table, Name denotes the name of benchmark
function; In denotes the number of inputs; Out denotes the
number of outputs; Size of BDD for CF denotes the num-
ber of nodes to represent the multiple-output function. LUT
denotes the total number of outputs used in the LUTs; Lvl
denotes the maximum number of levels; Cas denotes the
number of cascades; Time denotes the time (sec) to gener-
ate LUT cascades from SBDDs; and k denotes the maximum
number of inputs of the LUTs. In this experiment, r is set to
a sufficiently large value. Also, the symbol − denotes that
Algorithm 4 failed to produce a cascade. In Table 1, we only
showed the functions where we could construct monolithic
BDDs for CFs. We used an IBM PC/AT compatible ma-
chine using a Pentium4 3.2GHz processor with 1GByte of
memory. The operating system was Windows XP, and we
used gcc complier on cygwin.

Fig. 7 shows the LUT cascade for the benchmark function
vg2, where k = 8. It uses five cells and 21 LUT outputs. 19
functions with 8 inputs, and two functions with 6-input.

Figs. 8 and 9 show the LUT cascades for my adder, for
k = 7 and k = 9, respectively. Note that my adder is a 16-
bit adder with a carry input, and the algorithm successfully
found optimal ripple-carry adders.

Table 1: Cascade Realizations of MCNC89 Benchmark Functions.
Name In Out Size of k = 8 k = 9 k = 10 FPGA

BDD for CF LUT Lvl Cas Time LUT Lvl Cas Time LUT Lvl Cas Time LUT Delay
C432 36 7 1972 141 17 2 – 113 16 1 2.0 76 11 1 2.0 172 29.4
C880 60 26 800877 – – – – – – – – 373 19 4 555.6 155 25.0
alu2 10 6 258 11 2 1 0.0 10 2 1 0.0 6 1 1 0.0 115 17.2
alu4 14 8 1532 56 6 2 0.1 46 5 2 0.2 24 3 1 0.3 386 19.7
apex1 45 45 4897 270 23 2 30.1 167 19 1 291.1 115 12 1 291.7 936 25.3
apex2 39 3 449 54 12 1 0.4 35 8 1 0.4 35 8 1 0.4 167 18.6
apex3 54 50 3401 250 21 2 138.9 164 19 1 318.0 129 14 1 317.9 773 26.0
apex4 9 19 2339 40 2 3 0.3 19 1 1 8.5 19 1 1 8.4 1276 37.3
apex7 49 37 5064 198 24 2 25.7 156 19 1 52.0 110 13 1 52.1 110 16.5
b9 41 21 804 51 9 1 3.4 42 7 1 3.4 38 6 1 3.4 50 12.6
cc 21 20 323 30 4 1 0.7 30 4 1 0.7 27 3 1 0.6 23 13.0
cht 47 36 700 63 10 1 5.8 56 8 1 5.9 53 7 1 5.7 39 13.3
cm150a 21 1 52 11 4 1 0.0 9 4 1 0.0 8 3 1 0.0 9 11.7
comp 32 3 58 11 5 1 0.0 11 5 1 0.0 9 4 1 0.0 52 16.3
count 35 16 149 26 6 1 0.2 26 6 1 0.2 24 5 1 0.2 54 15.4
duke2 22 29 822 59 7 1 4.6 49 5 1 4.6 45 4 1 4.6 248 19.3
e64 65 65 260 74 10 1 6.5 72 8 1 6.3 72 8 1 6.3 268 16.9
example2 85 66 6347 308 41 1 202.0 215 27 1 932.9 166 19 1 933.5 161 15.5
frg1 28 3 132 18 6 1 0.0 15 5 1 0.0 13 4 1 0.0 44 16.7
lal 26 19 310 30 5 1 0.3 28 4 1 0.3 26 4 1 0.3 31 11.3
misex2 25 18 280 29 5 1 0.3 26 4 1 0.2 25 4 1 0.2 52 13.1
mux 21 1 52 11 4 1 0.0 9 4 1 0.0 8 3 1 0.0 9 11.7
my adder 33 17 149 22 6 1 0.1 20 4 1 0.1 20 4 1 0.1 57 19.5
pcler8 27 17 992 52 8 2 0.6 57 8 1 2.6 43 6 1 2.6 41 16.5
seq 41 35 1554 152 20 1 28.6 102 13 1 28.5 83 9 1 28.4 1031 25.2
term1 34 10 832 118 18 1 2.3 65 10 1 2.4 49 8 1 2.3 51 15.3
too large 38 3 449 54 12 1 0.5 35 8 1 0.4 35 8 1 0.4 1815 36.5
ttt2 24 21 3529 72 9 2 1.5 73 9 2 3.2 54 6 1 3.2 69 14.3
unreg 36 16 225 34 7 1 0.2 31 6 1 0.2 28 5 1 0.1 34 14.1
vg2 25 8 155 19 5 1 0.1 18 4 1 0.0 16 4 1 0.0 40 14.5

x1y1 x4y4

c0 c16

s1 s2 s3 s4

x5y5 x8y8

s5 s6 s7 s8

x9y9 x12y12

s9 s10s11s12

x13y13 x16y16

s13s14s15s16

Figure 9: LUT Cascade for 16-bit adder for k = 9.

5.2 Comparison with FPGAs
To compare our approach with FPGAs, we used Synplify

from Synplicity, Inc., Sunnyvale, CA. for logic synthesis, and
ISE Foundation for mapping into Xilinx Virtex (0.22µm, 5-
layer metal, 2.5V) XCV50-6 (180pin) FPGAs. In Table 1,
the columns headed by FPGA denote the design results of
FPGAs. LUT denotes the number of 4-input LUTs, and
Delay denotes the estimated delay (ns). Note that the num-
ber of LUTs does not show the real chip area. In FPGAs,
more than 90% of the chip area is devoted to interconnec-
tions [8]. For functions with many outputs, LUT cascades
are slower than FPGAs. So, for such circuits, the outputs
must be partitioned into smaller groups.

5.3 Other Functions

5.3.1 RGB Color Converter
This circuit computes U = −0.619R − 0.3316G + 0.5B,

where R, G and B are represented by 8 bits, and U is rep-
resented by 9 bits, and the most significant bit is the sign
bit. An LUT cascade with k = 13 is shown in Fig. 10. The
FPGA design required 12818 4-input LUTs and 78.7 ns of
delay for mapping into Xilinx Virtex XCV600-6 (316pin). In
this case, we used Synplify without speed priority options;

13 3
10 8

5
8

3

9

Figure 10: LUT Cascade for RGB Color Converter.

when we used the speed options, Synplify did not finish in
22 hours. For this kind of application, LUT cascades are
much faster than standard FPGAs, since the delay time of
a cell of the LUT cascade is at most 4 ns.

5.3.2 Binary to BCD Converter
This circuit converts a 16-bit binary number into a 5-digit

BCD number. Among various implementations, Muroga [7]
shows a circuit using 13 modules (ROMs). Algorithm 4
generated the cascade in Fig. 11, which uses only three
cells of 11 inputs each. The input binary number is repre-
sented by x1, x2, x3, . . . , x15, x16 and the output BCD num-
ber is represented by f1, f2, f3; f4, f5, f6, f7; f8, f9, f10, f11,
f12, f13, f14, f15, f16, f17, f18, f19. Note that f0, the most sig-
nificant bit of the most significant digit, is always 0, so, it
is omitted. Also, f19 = x16, that is, the least significant
output is equal to the least significant input.

When the specification of the converter was given by an
algorithm written in Verilog, we had a FPGA with 695 4-
input LUTs and 70.7 ns delay for Xilinx Virtex XCV150-6
(260pin). On the other hand, when the specification of the
circuit was given by a BDD, and then each node of the BDD
is replaced by a multiplexer, we had a FPGA with 1659 4-
input LUTs and a 33.1 ns delay. Also for this application,
the LUT cascade is faster than FPGA realizations.

x1 x11

f1 f2

x12

f3 f4 f5 f6

x13 x14 x15

f7 f19

10 7

x16

Figure 11: LUT Cascade for 16-bit Binary to BCD
Converter.

6. LIMITATION OF THE APPROACH

6.1 Limitation due to the Data Structure
The most time-consuming step of the algorithm is the

optimization of BDDs for CFs. The size and optimization
time of BDDs for CFs are, in most cases, larger than those
of SBDDs. When the size of the BDD for CF is too large to
build, we have to partition the functions into smaller groups
so that each BDD for CF can be constructed.

Logic functions having compact BDD representations in-
clude, symmetric functions, adders, and comparators. On
the other hand, randomly generated functions and multi-
plier have BDDs with exponential size (in n, the number
of input variables.), and they cannot be designed by our
method when n is large.

6.2 Limitation due to the Network Structure
In Table 1, experimental results for k = 8 to 10 are shown.

When k = 5, most functions in Table 1 cannot be real-
ized by LUT cascades. This is due to the fact that a given
function f is realized by a cascade of k-input LUTs only if
�log2 W� ≤ k − 1, where W is the width of the BDD for f
in the decomposition level.

In the design method for the cascade, each input variable
can appear in the input terminal of the cascade only once. If
we remove this restriction, then an arbitrary m-output logic
function can be realized by an LUT cascade of (m+2)-input
cells [11].

Also, the algorithm tries to realize a given multiple-output
function by using as few cascades as possible. However, this
strategy may not be practical in some applications. When
the number of the outputs is large, we should partition the
outputs into smaller groups and realize each group by an
independent cascade. This strategy often produces cascades
with fewer LUTs, but the wiring will be more complex.

7. CONCLUDING REMARKS
In this paper, we presented a method to decompose a

multiple-output logic function by using a BDD for CF. This
method efficiently produces LUT cascades with intermediate
outputs.

The decomposition method presented in this paper is quite
fundamental, and is promising not only for LUT cascades,
but also for random LUT networks. Extension to incom-
pletely specified functions is a challenging problem.

Acknowledgments
This research is partly supported by JSPS, the Grant in Aid
for Scientific Research, and MEXT, the Kitakyushu area
innovative cluster project.

8. REFERENCES
[1] R. L. Ashenhurst, “The decomposition of switching

functions,” In Proceedings of an International
Symposium on the Theory of Switching, pp. 74-116,
April 1957.

[2] P. Ashar and S. Malik, “Fast functional simulation
using branching programs,” Proc. International
Conference on Computer Aided Design, pp. 408-412,
Nov. 1995.

[3] Ting-Ting Hwang, R. M. Owens, M. J. Irwin, and
Kuo Hua Wang, “Logic synthesis for
field-programmable gate arrays,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., Vol. 13,
No. 10, pp. 1280-1287, Oct. 1994.

[4] J.-H. R. Jian, J.-Y. Jou, and J.-D. Huang,
“Compatible class encoding in hyper-function
decomposition for FPGA synthesis,” Design
Automation Conference, pp. 712-717, June 1998.

[5] Y-T. Lai, M. Pedram and S. B. K. Vrudhula, “BDD
based decomposition of logic functions with
application to FPGA synthesis,” 30th ACM/IEEE
Design Automation Conference, June 1993.

[6] S. Muroga, VLSI System Design, John Wiley & Sons,
1982, pages 293-306.

[7] R. Murgai, R. K. Brayton, and
A. Sangiovanni-Vincentelli, Logic Synthesis for
Field-Programmable Gate Arrays, Kluwer, 1995.

[8] J. Rose, R. J. Francis, D. Lewis, and P. Chow,
“Architecture of field-programmable gate arrays: The
effect of logic block functionality on area efficiency,”
IEEE Journal of Solid-State Circuits, Vol. 25, No. 5,
pp. 1217-1225, Oct. 1990.

[9] R. Rudell, “Dynamic variable ordering for ordered
binary decision diagrams,” Proc. ICCAD-93,
pp. 42–47, 1993.

[10] T. Sasao, M. Matsuura, and Y. Iguchi, “A cascade
realization of multiple-output function for
reconfigurable hardware,” International Workshop on
Logic and Synthesis, Lake Tahoe, CA, June 12-15,
2001, pp.225-230.

[11] T. Sasao, “Design methods for multi-rail cascades,”
International Workshop on Boolean Problems,
Freiberg, Germany, Sept. 19-20, 2002, pp. 123-132.

[12] H. Sawada, T. Suyama, and A. Nagoya, “Logic
synthesis for look-up table based FPGAs using
functional decomposition and support minimization,”
Proc. ICCAD, pp. 353-359, Nov. 1995.

[13] C. Scholl and P. Molitor, “Communication based
FPGA synthesis for multi-output Boolean functions,”
Asia and South Pacific Design Automation
Conference, pp. 279-287, Aug. 1995.

[14] http://www.synplicity.com

[15] B. Wurth, K. Eckl, and K. Anterich, “Functional
multiple-output decomposition: Theory and implicit
algorithm,” Design Automation Conf., pp. 54-59, June
1995.

[16] http://www.xilinx.com

