Further Improvements
in the Boolean Domain

Further Improvements
in the Boolean Domain

Edited by

Bernd Steinbach

Cambridge
Scholars
Publishing

Further Improvements in the Boolean Domain

Edited by Bernd Steinbach

This book first published 2018

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Copyright © 2018 by Bernd Steinbach and contributors

All rights for this book reserved. No part of this book may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without
the prior permission of the copyright owner.

ISBN (10):1-5275-0371-2
ISBN (13): 978-1-5275-0371-7

Contents

LIST OF FIGURESo xi
LIST OF TABLES ..ot XV
FOREWORD xix
PREFACE ... xxiii
ACKNOWLEDGMENTS ..\t tttttttt ettt xxxiii
LIST OF ABBREVIATIONSuitintitititaeaaiaeanennn. xxxvil
I Extensions in Theory and Computations 1
1 MOoODELS, METHODS, AND TECHNIQUESccuv.... 3
1.1 NP-Problems and Boolean Equations 3
1.1.1 Classes of Hard Problems 3

1.1.2 Boolean Functions and Equations 4

1.1.3 Boolean Equations and Ternary Vectors 5

1.1.4 NP-Complete Problems 9

1.1.5 Boolean Equations - a Unifying Instrument . . 24

1.2 Number of Variables of Index Generation Functions . 25
1.2.1 Background 25

1.2.2 An Index Generation Unit 26

1.2.3 Notation. 27

1.2.4 Expected Number of Variables 29

1.2.5 Distribution of the Expected Number 31

1.2.6 Expected Number of Balanced Columns 38

1.2.7 Found Results 42

vi Contents
1.3 Computational Complexity of Error Metrics 43
1.3.1 Approximate Computing 43

1.3.2 Preliminaries 44

1.3.3 Error Metrics 46
1.3.4 Complexity of Computing Error Metrics 49

1.4 Spectral Techniques - Origins and Applications 54
1.4.1 Origins and Evolution of Spectral Techniques . 54

1.4.2 Digital System Design 55

1.4.3 Signal processing 57

144 Towards FFT 59

1.4.5 Towards Alternative Spectral Techniques . .. 60

1.4.6 Applications of Spectral Techniques 63

1.5 A Relational Approach to Finite Topologies 69
1.5.1 Experimentation as Motivation 69

1.5.2 Relation Algebra 70

1.5.3 Modeling Sets and Finite Topologies 71

1.5.4 Closures, Interiors and Boundaries 74

1.5.5 Topological Relations and Random Topologies 79

1.5.6 Implementation and Related Work 84

1.6 A Real-World Model of Partially Defined Logic 87
1.6.1 Real-World Asynchronous Feedback 87

1.6.2 Related Topics 88

1.6.3 Use Case: Low-Active RS-Latch 89
1.6.4 Stabilized Dual-Rail Implementation 93

165 Results 96

2 ACCELERATED COMPUTATIONS ...utittittininnennennenn. 99
2.1 Bent Function Enumeration Using an FPGA 99
2.1.1 Background 99

2.1.2 Properties of Bent Functions 100
2.1.3 Architecture for Bent Function Discovery . . . 101
2.1.4 Circular Pipeline Architecture. 106
2.1.5 Circuit of the Circular Pipeline 110
2.1.6 Experimental Results 111
2.1.7 Analytical Results 115
2.1.8 Practical Aspects 117

2.2 Efficient Generation of Bent Functions Using a GPU . 120
2.2.1 Discovery of Bent Functions 120
2.2.2 Bent Functions in Two Domains 122

2.2.3 Random Generation of Bent Functions 128

Contents vii
2.2.4 Implementation on a GPU Platform 130
2.2.5 Comparison Between CPU and GPU Platforms 134

2.3 Multi-GPU Approximation Methods 136
2.3.1 Error Detection and Correction 136
2.3.2 Computing Distance Distribution of AN Codes 140
233 Results oL 147
234 Summary 154

2.4 Orthogonalization of a TVL in Disjunctive or Conjunc-
tive Form 156
2.4.1 Orthogonality 156
2.4.2 Ternary Vector List (TVL) 159
2.4.3 Orthogonal Operations for Ternary Vectors 162
2.4.4 Orthogonalization of a TVL in DF or CF 166
2.4.5 Experimental Results 171

Il Digital Circuits 173

3 SYNTHESIS, VISUALIZATION, AND BENCHMARKS 175

3.1 Vectorial Bi-Decompositions for Lattices 175
3.1.1 Synthesis of Combinational Circuits 175
3.1.2 Vectorial and Single Derivative Operations 180
3.1.3 Generalized Lattices of Boolean Functions . . . 182
3.1.4 Vectorial Bi-Decompositions 189
3.1.5 Application of the Vectorial Bi-Decomposition 194
3.1.6 Comparison with Other Synthesis Approaches . 196

3.2 Hardware/Software Co-Visualization: The Lost World 199
3.21 TheLost World. 199
3.2.2 Visualization Techniques 200
323 Corelssues 208
3.2.4 Enabling the Fiddlers and Tinkerers 210
3.25 A Brave New World 212

3.3 Synthesis of Complemented Circuits 214
3.3.1 Decomposition with Two-Input Operators . . . 214
3.3.2 Previous Work 217
3.3.3 DBoolean Relations 218
3.3.4 Complemented Circuits 220
3.3.5 Minimization of Complemented Circuits 224
3.3.6 Structure of Complemented Circuits 225
3.3.7 Experimental Results 228

viii

Contents

3.4

3.5

3.6

3.7

Design of Multipliers Using Fourier Transformations

3.4.1 Approaches for Multiplication on Hardware . .
3.4.2 Design of Monolithic Multipliers
3.4.3 The Adder Tree in Multiplication
3.4.4 Discussion of the Results
Low Power Race-Free State Assignment
3.5.1 Synthesis for Low Power Consumption
3.5.2 A Behavioral Model
3.5.3 The Condition for Absence of Critical Races . .
3.5.4 Minimizing the Length of State Codes
3.5.5 Minimizing the Switching Activity
3.5.6 A Heuristic Method
Boolean Discrete Event Modeling of Circuit Structures
3.6.1 Different Abstraction Levels for Modeling . . .
3.6.2 Theoretical Foundation
3.6.3 Syntax for Discrete Event Modeling
3.6.4 Use Case: CMOS Inverter
3.6,5 Results
Collection of Logic Synthesis Examples
3.7.1 The Reasons to be Prudent
3.7.2 Benchmarks to Compare Design Tools
3.7.3 Origins of Benchmarks
3.7.4 Improvements of the Usability of Benchmarks .
3.7.5 A Provided Collection of Benchmarks
3.7.6 Examples and Statistical Properties

RELIABILITY AND LINEARITY OF CIRCUITScovnn....

4.1

4.2

4.3

Low Complexity High Rate Robust Codes
4.1.1 The Hardware Security Problem
4.1.2 Security Versus Reliability
4.1.3 Robust Codes
4.1.4 The Shortened QS Code
4.1.5 The Triple QS and Triple Sum Codes
Synthesis for Reliability Using Bi-Decompositions . . .
4.2.1 Methods to Improve the Reliability of Circuits
4.2.2 Synthesis for Reliability
4.2.3 Experimental Results
4.2.4 Reliability: Challenges and Approaches

Linearization of Partially Defined Boolean Functions .
4.3.1 Partially Defined Boolean Functions

Contents ix

4.3.2 The Linearization Method 336
4.3.3 Efficient Finding of a Linear Transform 337
4.3.4 Existence of an Injective Linear Transformation 344
4.3.5 Connections to Linear Error-Correcting Codes 347

Il Towards Future Technologies 353
5 REVERSIBLE AND QUANTUM LOGIC 355
5.1 FDD-Based Reversible Synthesis by Levels 355
5.1.1 Methods to Synthesize Reversible Circuits . . . 355

5.1.2 Post-Order FDD-Based Reversible Synthesis . 357

5.1.3 FDD-Based Reversible Synthesis by Levels . . 363

5.1.4 Experimental Results 369

5.2 Distributed Evolutionary Design of Reversible Circuits 372
5.2.1 Extending RIMEP2 to DRIMEP2 372

5.2.2 Background Lo 372

5.2.3 The Hierarchical Model Based on RIMEP2 . . 374

5.2.4 The Islands Model Based on RIMEP2 375

5.2.5 Hybrid Models 376

5.2.6 Experiments and Interpretation of the Results 377

5.2.7 Relevant Features 382

5.3 Towards Classification of Reversible Functions 384
5.3.1 Reversible Boolean Functions 384

5.3.2 Preliminaries 388

5.3.3 Homogeneous Component Functions 391

5.3.4 Motivation for Future Work 403

5.4 The C"F Logic Functions Derived from C*NOT Gates 405
5.4.1 Reconfigurable Reversible Processors 405

5.4.2 Background oL 406

5.4.3 C3NOT Gate and C3F Functions 408

5.4.4 Analysis of C*NOT and C*F 412

5.4.5 Generalizations and Remarks 413
BIBLIOGRAPHY ..ottt 419
LIST OF AUTHORS ..ttt et 465
INDEX OF AUTHORS .. .ettttitetiitae e 473

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25

2.1
2.2

List of Figures

Ten queens and two pawns located at c3 ande5 10
Example of a vertex cover 13
Birkhoff’s Diamond: uncolored and colored 16
Graph with a clique of three vertices 17
The adjacency matrix of a graph 18
Graph with a red colored clique 19
The incidence matrix of the graph of Figure 1.6 19
Edge cover of a graph L. 21
Hamiltonian path 22
Graph for exploring Eulerian paths 23
Index generation unit L oL 26
Fraction of functions realized using 4 to 32 vectors . . 35
Adder circuit approximated from a ripple carry adder 48
A relation and two vector-models of sets of sets 75
Models of a topology and the set of closed sets 75
Sets and their closures, interiors and boundaries . . . 78
Graphical visualization of a closure operation 78
Specialization, distinction and separation relation . . . 83
RELVIEW-programs: closures, interiors, boundaries . . 84
Low-active RS-latch and metastability 90
Race condition resulting in non-determined signals . . 90
Behavior of the programmable JK-/RS-buffer 94
Structure of the programmable JK-/RS-buffer 94
RS-buffer 95
Parallel composed partial low-active RS-latch 96
Original bent function enumeration circuit 102
Distribution of functions to the number of bent weights

form=4. e 108

xii List of Figures
2.3 Distribution of functions to persistence in a circular
pipeline forn=4 109
2.4 Architecture of a single circular pipeline 110
2.5 Speed-Up and number of LUTs versus the number of
circular pipelineso oo 112
2.6 The Xilinx ZedBoard system 117
2.7 The complete system 118
2.8 Butterfly operations for the Reed-Muller and Walsh
transform matriceso 127
2.9 Example of a data-flow graph of the fast Reed-Muller
transform algorithm of the Cooley-Tukey class 128
2.10 High-level architecture diagram of the GPU 132
2.11 Host program to launch a GPU program 133
2.12 Encoding of data words and decoding of code words. . 137
2.13 CUDA implementation using local memory 143
2.14 CUDA implementation using shared memory 145
2.15 Shared memory access pattern 147
2.16 p3' and p4' for odd A’s for k€ {8,...,16} 150
2.17 Convergence of the maximum relative error A 151
2.18 Influence of the number of iterations M 152
2.19 How value A controls the probability for k = {8,16} . 152
2.20 How value A controls the probability for k=24 153
2.21 Structure of a Ternary Vector List (TVL). 160
2.22 Preprocessing steps to speed-up the orthogonalization 170
2.23 Comparison of computation time for N=20 171
2.24 Average number of Ternary Vectors (T'Vs) in the solu-
tion TVL for N=20 172
3.1 General structure of the bi-decomposition 177
3.2 Adding several directions of change to the indepen-
dence matrix IDM(f). 188
3.3 Vectorial bi-decompositions: structure and conditions 190
3.4 Karnaugh-maps of (a) the given lattice and (b) the re-
alized Boolean function. 195
3.5 Circuit structure with two vectorial OR-bi-decomposi-
tlons 196
3.6 Circuit structure synthesized by weak and strong bi-
decompositions Lo oL 197
3.7 The Voronoi treemap of a software system 201
3.8 Software visualization through metaballs 201

List of Figures xiii
3.9 The Pharo system visualizes software evolution 202
3.10 The code swarm system animates software evolution . 202
3.11 The state of current hardware visualizations 203
3.12 Waveform viewer illustrating signal assignments over

time 204
3.13 Multi view hardware visualization 206
3.14 SystemC visualization of an adder module 207
3.15 SystemC visualization of a RISC CPU 207
3.16 Alternative realizations of a function f(x) with com-

plemented circuits 216
3.17 Maximal frequencies of monolithic multipliers and mul-

tipliers synthesized by Synopsys 243
3.18 Adder tree for a multiplication in regular arithmetic 247
3.19 Adder tree for a multiplication in saturation arithmetic:

version 1. Lo Lo 249
3.20 Adder tree for a multiplication in saturation arithmetic:

version 2o 250
3.21 Maximal frequencies of multipliers with adder trees . . 251
3.22 Module M with input vector and output vector 'y 273
3.23 Pull-up transistor circuit of a CMOS inverter 275
3.24 Pull-down transistor circuit of a CMOS inverter 276
3.25 Parallelly composed CMOS inverter 278
3.26 Impact of transforming circuit examples into SOPs . . 284
3.27 Impact of transforming circuit examples into SOPs for

20 iterationso 285
3.28 Comparison of IWLS’91 and IWLS’93 286
3.29 Comparison of IWLS’91 and IWLS’93 after synthesis . 287
3.30 Development of the most popular benchmark sets . . . 292
3.31 Structure of the circuit collection 299
3.32 Circuit sizes by literals in the original description . . . 301
3.33 Circuit sizes by LUTs after synthesis 302
4.1 Schematic illustration of a communication model . . . 305
4.2 Schematic of a hardware system 307
4.3 Mathematical model of a protected hardware system . 310
4.4 Architecture for circuits with a high reliability 321
4.5 Separation of a variable using XOR gates 323
4.6 Structure of strong and vectorial bi-decompositions . . 326
4.7 Vectorial and strong XOR bi-decomposition of the car-

ry function oo oo 328

xiv List of Figures

4.8 Gate equivalents for the decomposed adder
4.9 Power for the decomposed adder
4.10 FPGA synthesis results

5.1 Types of Toffoli gates
5.2 Realization of the 4mod5 benchmark
5.3 Optimal realization of the 4mod5 benchmark
5.4 Utilization of a shared successor.
5.5 Zero-polarity FDD for rd53
5.6 Circuit rd53 synthesized by the post-order algorithm .
5.7 Circuit rd53 synthesized by mapping of levels
5.8 Topologies used to design reversible circuits
5.9 C2NOT gate implemented in the CNOT/CV/CVi
5.10 C3NOT using the Barenco model
5.11 Karnaugh-map of the function C*F
5.12 Function fg(5) - fs(5) L

1.1
1.2
1.3
14
1.5

1.6
1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

2.1

2.2

List of Tables

Negationo
Boolean functions of two arguments
Binary code of ternary values
Two pawns and n + 2 queens on an n X n chessboard .
Set cover: all characteristic functions and all minimal
COVETS o o v v v e e it e et e e
Exact set cover Lo
All solutions to color Birkhoff’s Diamond using 3, 4 or
Beolors
Ramsey numbers R(r,s)
Example of a registered vector table of weight 8
Fraction of k x k binary matrices versus the number of
columns needed to distinguish all rows for 2 <k <7 .
Fraction of k x k binary matrices versus the number of
columns needed to distinguish all rows for 8 < k < 64

Fraction of binary matrices T (n, k) with k£ < 32 rows
and n columns (all rows are distinguished)
Average number of columns to distinguish rows in ran-
dom binary matrices
Fraction of binary matrices such that all rows are dis-
tinguished oo
Truth table and bitflips for the exact adder + and the
approximated adder + L.
Low-active RS-latch—logical vs. digital

Speed and resources used in a circular pipeline com-
pared to the resources available in a Xilinx FPGA

Simultaneous bent functions found per clock period for
N=4 e

— = Ot

1

13
17
20
28
30

31

xvi List of Tables
2.3 Functions with persistence 8 and their contributions 115
2.4 Functions with persistence 7 and their contributions 116
2.5 Clocks used by functions of various persistence values 117
2.6 Limitation of the number of non-zero PPRM coeffi-

cients of bent functions 129
2.7 Comparison of random generation of one bent function

on a CPU and two GPUs 135
2.8 Calculation of the distance distribution of AN codes 148
2.9 Solution time for 1D grid point sampling with A=61 . 148
2.10 Profiler results o oL 149
2.11 Super A’s and minimum Hamming distances 154
2.12 Orthogonal conjunctions 158
2.13 Orthogonal disjunctions 158
2.14 Relationship between a ternary element and a Boolean

Variableo o 160
2.15 Complement of ternary elements 161
2.16 Intersection of two ternary elements 161
3.1 Alternative circuits for the same function of a lattice . 198
3.2 Example of a Boolean relation. 219
3.3 A three-output function specified by a relation 219
3.4 Binary operations depending on both z and y 221
3.5 Relations corresponding to the operation AND 222
3.6 Relations corresponding to the operation OR 223
3.7 Relations corresponding to the operation XOR 224
3.8 Boolean relations for functions with two outputs 228
3.9 Comparison of SOP vs. complemented circuits using

the method EXACT 230
3.10 Comparison of SOP vs. complemented circuits using

the method HEURISTIC 231
3.11 Minimization results using the method EXACT 232
3.12 Minimization results using the method HEURISTIC 233
3.13 Gain of complemented circuits w.r.t. corresponding

SOP forms 234
3.14 Average gain of complemented circuits w.r.t. corre-

sponding SOP forms 234
3.15 Comparison of time, area and delay between ESPRESSO

and complemented circuits - EXACT case 235
3.16 Comparison of time, area and delay between ESPRESSO

and complemented circuits - HEURISTIC case 236

List of Tables xvii
3.17 Number of conjunctions of the DNF and the minimized
DF . 242
3.18 Number of adders needed for FTM multiplications 248
3.19 Transition function 255
3.20 Conditional probabilities of the explored transitions 260
3.21 Absolute probabilities of the explored transitions . . . 261
3.22 Compatible sets 261
3.23 Definition of the implication and equivalence 270
3.24 Partial and total specification of proposition C' 271
3.25 Pin specification of the pull-up transistor 275
3.26 Pin specification of the pull-down transistor 277
3.27 Circuit origins and filename prefixes 298
3.28 Basic statistical propertieso 301
4.1 Comparison of binary high rate robust separable codes 317
4.2 Comparison of non-binary high rate robust separable
codes 318
4.3 Degree of linearity of adder functions sg,...,sg 325
4.4 Areas and delay for different decomposed adders 331
5.1 Realization of BDD and FDD nodes by Toffoli gates 359
5.2 Realization of positive Davio nodes by Toffoli gates . . 360
5.3 Realization of negative Davio nodes by Toffoli gates 361
5.4 Reversible networks using zero-polarity FDDs 370
5.5 Reversible networks using optimal FPFDDs 371
5.6 Benchmark specifications from [357,394] 379
5.7 Average quantum cost within 100 runs 380
5.8 The total execution time for 100 independent runs 381
5.9 Successful runs over 100 runs L. 382
5.10 Performance of DRIMEP2 versus [357,394] 383
5.11 Establishing values of the 3-variable function f; 399
5.12 Truth table for the function NPC3x3 400
5.13 Construction of a 3 x 3 reversible function 403
5.14 Two components of the C?2NOT gate 406
5.15 Truth table of the C3NOT function 409
5.16 Truth table of the Majority controlled NOT gate 411
5.17 Significant control functions of the f,(-) components . 413

Foreword

Further Improvements in the Boolean Domain contains some of the
latest innovations with regard to the theory and application of al-
gebraic methods over the Boolean domain. Algebras involving the
Boolean domain have been studied and used by philosophers, scien-
tists, mathematicians, and engineers since at least the time of Aristo-
tle’s development of the syllogism. In the past century, electrical and
electronic artifacts that utilize switching elements have been exten-
sively modeled with switching algebras or binary-valued algebras due
to the advent of digital computation and communication. Although
many theorists and practitioners have studied and used methods in
the Boolean domain, new and useful results continue to emerge as
the information age continues to evolve. This useful compilation of
further improvements continues this tradition.

The book is organized into three parts titled: “Extensions in Theory
and Computations”, “Digital Circuits”, and “Towards Future Technolo-
gies”. These three parts are further divided into five separate chapters
that provide results in areas ranging from theoretical concerns to those
that are applicable to modern design and implementation challenges
such as automated synthesis and reliability. Emerging computational
paradigms based upon reversible functions and quantum mechanical
phenomena continue to utilize frameworks in the Boolean domain, fur-
ther underscoring the need for continued improvements in this area of
discrete mathematics.

The first part of the book is devoted to theory and computation.
Chapter One contains several new theoretical results including the re-
lationship of Boolean equations to problems in the class NP. A recent
area of interest is the study of the class of functions known as index
generation functions. New theoretical characteristics are provided for
these functions that have many useful applications in data networks
and memory. Approximate computing encompasses the use of func-

<x Foreword

tions that are not precisely equivalent to those they approximate.
The use of approximate functions can lead to significant efficiencies
although a corresponding loss in precision accompanies their use and
this topic is considered. Spectral methods have been the subject of
both practical and theoretical concern for many years although new
results continue to emerge and some of the latest results are pro-
vided in a survey of applications. Next, the topic of finite topologies
is considered with the interesting approach of using a relational alge-
braic framework provided by the RELVIEW computer algebra system.
Chapter One concludes with a subsection devoted to the application
of partially defined logic to the important and timely area of asyn-
chronous circuit design.

The second Chapter of the book is concerned with accelerated compu-
tations. Performance continues to be a major concern and new results
in the Boolean domain are applied to achieve performance enhance-
ment. Bent functions are those that exhibit maximal nonlinearity and
are known to have desirable characteristics when employed in certain
classes of cryptographic algorithms. While bent functions are desir-
able to use in these circumstances, their enumeration and discovery
remains a hard problem that motivates the development of new archi-
tectures for that purpose. An approach based upon FPGAs for the
purpose of finding such functions is described and its effectiveness is
analyzed. A second approach for generating bent functions combines
a random method with GPU computational cores. Next, the subject
of an arithmetic code known as the AN code is considered. AN codes
are nonlinear and find their application in error detection at the hard-
ware level. Once again, a GPU-based analysis and experimentation
environment is described that allows for the computation of AN code
distance distributions and SDC probabilities. The final contribution
in Chapter Two considers the situation wherein associated forms of
Boolean functions are often preferable to normal forms in terms of
the literal count; however, the associated forms are not necessarily
orthogonal. Ternary vector lists (T'VLs) are presented and a means
for using them to find orthogonal associated forms is provided and
validated with experimental results.

The next part of the book is devoted to digital circuits and is com-
prised of Chapter Three which is concerned with synthesis, visualiza-
tion, and benchmarks, and, Chapter Four which is concerned with

Foreword xx1

reliability and linearity.

A fundamental operation in digital circuit synthesis is that of de-
composition. A particular form of decomposition, namely vectorial
bi-decomposition for lattices is described in detail in the first contri-
bution of Chapter Three. The next contribution takes a somewhat
philosophical view and considers the use of visualization as a tool in
hardware/software design with both a survey of present methods and
predictions about the future of this area and its corresponding po-
tential impact. The subject of complemented circuits and their role
in logic synthesis is described with emphasis placed upon the mini-
mization problem and experimental results provided to validate the
approach. A large percentage of digital circuit data-paths include
arithmetic circuitry with the multiplier being a common element. An
approach for the design of such multipliers based upon the use of
the Fourier transform is described and example multiplier designs us-
ing both regular and saturated arithmetic are provided. The state
assignment problem is considered next with respect to the criterion
of minimizing power dissipation. A heuristic approach to the state
assignment problem for low power is provided with an accompany-
ing example to illustrate the method. Simulation is a basic need in
digital circuit design and analysis and is often used in a stand-alone
manner, or in support of other digital circuit engineering tasks. Dis-
crete event modeling is considered and a syntax is provided based on
both partially and totally specified propositions. The final contribu-
tion of Chapter Three is concerned with the use of benchmark circuits
for the purpose of evaluating new approaches in digital circuit engi-
neering tasks. A history and analysis of many common benchmark
circuit collections is provided as well as an analysis of their perfor-
mance characteristics when used in a variety of different digital circuit
engineering tasks.

Chapter Four is also included in the digital circuits section of the
book and is comprised of three contributions. The first contribution
is concerned with security oriented codes that are referred to as low
complexity high rate robust codes. The motivation for the use of these
types of codes is to overcome the effects of adversaries that may be
employing side channel or other types of attacks. The next section
is aimed toward increasing reliability through decomposing a circuit
into linear and non-linear portions. A degree of linearity is introduced

xxii Foreword

whereby the measure can be used to guide a bi-decomposition of a
candidate circuit. The final contribution of Chapter Four is concerned
with partially specified functions and describes how such functions can
be linearized.

The third and final part of the book is concerned with future tech-
nologies and is comprised of four contributions. The first contribution
is concerned with reversible circuit synthesis via the use of functional
decision diagrams (FDDs). Reversible circuit design is also considered
in the second contribution; however this time a probabilistic approach
in the form of an evolutionary algorithm is used. Although irreversible
function classification has a rich history, the classification of reversible
functions has not been studied to a similar depth. The next contribu-
tion is concerned with the classification of reversible circuits and pro-
vides several definitions and theorems. The final contribution moves
from reversible logic into the more general realm of quantum opera-
tors and considers various decompositions for the C"F gate as derived
from the C"NOT gate.

Mitchell A. Thornton

Southern Methodist University, Dallas, Texas, USA
June 2017

Preface

Digital systems significantly contribute to the progress in almost all
areas of our life. Boolean variables and functions are used to describe
such systems. These variables can only carry two different values: 0
and 1. This is the smallest possible number and contributes to both
a high reliability and a simpler production in comparison to systems
with a higher number of different basic values. This book presents
further improvements regarding a large number of problems by 36
authors from the international Boolean domain research community.
Basic versions of the contributions of this book have been published
in the proceedings of the 12th International Workshop on Boolean
Problems [320].

Improvements in the Boolean domain require both progress in theory
and powerful tools which utilize the new theory. The first part of this
book deals with methods, algorithms, and programs for these aims.

Solutions of many Boolean problems exponentially depend on the
number of variables. Hence, we are faced in the Boolean domain with
the most complex problems. In addition to the well-known CD-SAT-
formulas which are restricted to conjunctions of disjunctions (clauses),
the more compact CDC-SAT-formulas are introduced where the vari-
ables of the disjunctions are replaced by the conjunction of Boolean
variables. Due to the improved power of SAT-solvers and the high per-
formance of ternary vectors and further concepts implemented in the
XBOOLE system, Boolean problems can be solved that have a com-
plexity far beyond any human possibilities. Hence, it remains to find
a proper description of the problem using Boolean variables, Boolean
functions, and Boolean equations. Using many examples reaching
from combinatorics on the chessboard, over several covering prob-
lems, to different graph coloring problems, the creation of models
represented by Boolean equations as a unifying instrument have been
demonstrated.

xxiv Preface

An index generation function is a function which maps a binary in-
put pattern to a unique non-zero integer index value. Such a pattern
may represent a virus to be detected or a packet to be routed. The
number of Boolean variables needed to distinguish between all pat-
terns determines the size and cost of the hardware needed to realize
such a function. Assuming that the k patterns must be detected then
m variables are needed, where [logs k] < m < k — 1. Using an ex-
perimental approach it has been found that the minimum number of
variables needed in the realization of an index generation function can
be expected to be closer to the lower bound than to the upper bound,
especially when k is large. Hence, most index generation functions
can be realized using inexpensive conventional memory. Furthermore,
it has been found that balanced columns are of benefit to the search
for minimum distinguishing sets, especially when k is small.

Significant improvements in terms of performance and energy effi-
ciency can be achieved when instead of an exact implementation an
approximate one is realized. Approximate computing is a technique
that relaxes the requirement for an exact equivalence between the
specification and the implementation of circuits. This approach can
be used, e.g., when the limited perceptual capabilities of humans do
not require an exact numerical computation. The quality of an ap-
proximation is measured using an error metric that compares the ap-
proximated function with the original one. Several error metrics are
explored with the result that the synthesis for approximate computing
with precise error bounds is a difficult task. The derived challenges
have a need for strong methods in computing precise errors as well as
heuristics methods.

Spectral techniques based on various spectral transforms in different
algebraic structures provide the foundations for the approaches for
classifying Boolean functions, detecting their hidden properties, or
reducing the computation effort. A comprehensive review of the ori-
gins and evolution of spectral techniques provide the readers with a
very useful basis for research in the areas of design of digital systems
and signal processing. Many references to books or articles in jour-
nals support this research. This review indicates that both serious
tasks and restricted resources are incitements for scientific progress
and practical applications. It can be expected that spectral techniques
furthermore contribute to improvements in the Boolean domain.

Preface XXV

Topology is a fundamental branch of mathematics that explores the
properties of mathematical structures. Basics of topology are geome-
try and set theory. The descriptive set theory that explores operator
algebras, computability, mathematical logic, as well as harmonic anal-
ysis belong to the wide field of applications of topologies. Due to the
focus on computational problems finite topologies are explored. It is
shown how objects and concepts from finite topologies can be modeled
using relations, how related tasks can be expressed using the language
of relation algebra and how the RELVIEW system can be used to com-
pute and visualize solutions. The efficient implementation of this tool
allows for experiments with very large topologies.

The clocked synchronization of digital systems ensures their deter-
ministic behavior to the price of a certain inefficiency. Analog sys-
tems work efficiently but suffer under an ambiguous behavior. It is a
challenge to couple the advantages of these types of systems to create
efficient deterministic circuits. Key issues in this field of research are
partially defined functions, their models, and utilization within the de-
sign process. A new formal methodology is suggested that warrants
the match between the partially specified functions and real world
asynchronous feedback structures. This dual-rail approach combines
the benefits of both traditional types of systems and can even be used
for safety critical systems.

Due to the exponentiation complexity of almost all Boolean prob-
lems efficient tools for their solution are needed. As an example of a
very hard Boolean problem the computation of the number of bent
functions has been selected. Bent functions are the most non-linear
functions that can be used in cryptography to resist linear attacks.
In a previous work an expensive reconfigurable computer was used to
speed-up this calculation by about 60,000 times. The utilization of
both a deeper knowledge about bent functions and the application of
a circular pipeline on a much cheaper Field Programmable Gate Ar-
ray (FPGA) result in an additional speed-up of more than two orders
of magnitude.

The computation of bent functions is also the topic of other research.
The key idea of this approach consists of the random generation of
a function of a certain even number of variables and the check to
see whether it is a bent function. Due to the very small fraction of

xxvi Preface

bent functions the generation is executed in the Reed-Muller domain,
where the search spaces for bent functions can be restricted be means
of several theorems. The fast Reed-Muller transform has been used to
compute the truth vector of a Boolean function. Utilizing the GPU
an additional speedup of up to three orders of magnitude has been
reached for bent functions of up to ten variables.

An important practical problem is the detection and correction of
one or more bit flips (errors) in data words, for which data coding
is typically exploited. There is always the risk that bit flips change
valid code words into other valid code words, which prohibits both
error detection and correction. In order to minimize this risk non-
systematic, non-linear AN-codes are used. The letter A indicates an
integer constant used to encode the data word N, which is usually also
an integer number. Here, the error detection capability is influenced
by both the parameter A and the data type of N. To estimate the risk
of undetectable bit flips, we need to compute the distance distribution
between the codewords for each possible value of A depending on the
width £ of the data words. This computation is a big challenge which
has time complexity in the order of 4*. Efficient multi-GPU imple-
mentations have been developed to solve this problem and determine
preferable values of A.

The representation of a Boolean function as an orthogonal list of
ternary vectors allows us to use such a TVL for both a disjunctive
form and an antivalence form. The knowledge that each binary vec-
tor cannot be covered by more than one ternary vector of such an
orthogonal TVL is an additional advantage. A special order in which
the ternary vectors are selected from a TVL in disjunctive form to
compute the needed orthogonal difference leads to a shorter number
of ternary vectors in the resulting TVL. The preprocessing steps of
absorption and sorting of the ternary vectors by increasing numbers of
dashes additionally contribute to both a shorter time needed to com-
pute an orthogonal TVL and the smaller number of ternary vectors
in the result.

Improvements in the Boolean domain considerably affect the develop-
ment and application of digital circuits. Due to the extensive use of
such circuits in almost all areas of our daily life we immediately notice
this progress. Digital circuits have been developed and applied over

Preface xxvil

several decades. Hence, one could think all problems about them have
already been solved. The second part of this book explores new in-
sights in this field and confirms the continuous progress in appropriate
research and applications.

Bi-decomposition is a powerful synthesis method for combinational
circuits. This methods splits a given function into two simpler func-
tions which control the inputs of an AND-, an OR, or an XOR-gate
such that the given function appears on the output of this gate.
The simplification of the decomposition functions is reached in the
case of the strong bi-decomposition by a smaller number of vari-
ables that the decomposition functions are depending on. Strong
and weak bi-decompositions are sufficient for a complete synthesis
approach. The decomposition functions of recently suggested vecto-
rial bi-decompositions are simpler than the given function because of
the independence of the simultaneous change of several variables. The
generalized theory of derivative operations for lattices of the second
level has been utilized for vectorial bi-decompositions of such lattices
and furthermore reduces the needed chip-area, power, and delay of
the synthesized circuits.

An interesting analysis about the visualization in both the hard-
ware and software domains come to astounding and alarming results.
While software visualization is an active field of research that supports
the software designer with many helpful visualization techniques, the
hardware visualization is in a state of a “lost world”. Almost un-
changed over several decades are graph views that are used to show
how parts of the hardware are interconnected and waveform views vi-
sualize the signal changes over time. In the context of growing system
designs, where both hardware and software contribute to the solution,
innovative tools are needed for Hardware/Software Co-Visualization.
The answer to the question “why” there is such a discrepancy between
hardware and software visualization approaches can help to remove
obstacles and encourage engineers and scientist to fill the recent gap
in this field.

Traditional aims in circuit design consist of the synthesis of smaller
and faster circuits for a given function. A new contribution to improve
the reached limits of these aims is the synthesis of complemented cir-
cuits. This approach utilizes the differences in the space and delay

xxviil Preface

needed that can exist between a circuit that realizes the given func-
tion and a circuit of the complement of this function. The benefits of
the new complemented circuits result from the common use of both
the function and its complement as well as the utilization of given
and created don’t cares. The theoretical basis of this approach is the
utilization of Boolean relations which are explored for all ten opera-
tions depending on two-inputs. Comprehensive experimental results
for both the exact and heuristic synthesis of more than 100 benchmark
functions show that this new approach improves the known results of
three-level circuits in many cases.

Next to addition, multiplication is a frequently used arithmetic oper-
ation in digital circuits. While several approaches of optimized adders
are known, the possibilities to optimize multipliers are not as yet com-
pletely utilized. There are two types of multipliers. Assuming n bits
for each of the two input values, in regular arithmetic the output of the
multiplier contains 2n bits, but in saturation arithmetic the output is
restricted to n bits. A comprehensive exploration of circuit structures
of multipliers in both regular and saturation arithmetic leads to up
to 33% faster circuits in comparison to the multipliers synthesized by
the commercial tool Synopsys. The sources for this improvement are
the use of a monolithic multiplier block of a size of around 4 x 4, the
concatenation of fitted intermediate results, and a restricted tree of
adders. Unfortunately, the reached speed up of monolithic multiplier
blocks of a size of 4 X 4 or 5 X 5 requires about two to five times more
area.

The power consumption becomes a more and more important limita-
tion factor for very large scale integrated circuits. The thermal leakage
power causes a temperature rise that constrains the circuit behavior
and requires additional equipment for heat transmission away from
the device. Low power consumption is also welcome for a long period
of use of a mobile device until the next charge of the rechargeable
battery. The power consumption is caused by the switching elements.
One contribution to reduce the power consumption consists of the
state assignment of an automaton such that a minimal number of
switching elements must be changed for the needed transitions. A
basic model and an heuristic algorithm for this task will be explained.
This approach can be used for asynchronous finite state machines and
leads to race-free circuits of low power consumption.

Preface xxix

Digital systems are realized by logic gates and flip-flops. Many synthe-
sis approaches are known to find a circuit structure of these building
blocks for a given behavior. Transistors are the real switching ele-
ments used within the logic gates and flip-flops. A more fine granular
modeling technique has been suggested that directly allows us to use
transistors as basic building blocks of digital systems. The theoretical
foundation is constituted on the definition of both partial and total
operations of the implication and equivalence. This approach can be
uniformly used on several levels of abstraction: the global behavior
represented by a directed graph, the more concrete signal flow graph
which can be seen as the most abstract structural view of a arbi-
trary circuit, the even more concrete signal flow plan that consists of
modules of partially defined behaviors, down to the transaction level
modeling.

The complexity of digital circuits requires the use of design automa-
tion tools. Consequently, new synthesis procedures are implemented
in such tools to improve the structure of the designed circuits. The
only way to compare the properties of several synthesis tools is the
synthesis of a set of circuits based on the same descriptions of these
benchmark circuits. This general approach has been used over several
decades and different benchmark sets were published and used for this
purpose. However, the circuit implementations have been changed
over the years and influenced the creation of new benchmark sets.
A prudent approach led to a comprehensive collection of benchmark
circuits for logic synthesis and optimization. The benefit of this collec-
tion is a unique description of benchmarks of many sources presented
in a cleaned, flattened form and split into connected components.

Secret information stored within a hardware system is the target of
side-channel attacks such as the differential fault analysis. Such at-
tacks try to inject faults into the system that alter the output. Know-
ing the injected faults and the associated output signals the wanted
secret keys can be calculated. The faults can be injected within the
communication channel. Security oriented codes for the transmit-
ted data can be used to detect injected faults and prevent such side-
channel attacks. The few known codes have drawbacks regarding the
error masking probability as well as the cost of their implementa-
tion. New suggested low complexity, high rate robust codes are the
shortened quadratic-sum, triple sum, and triple-quadratic-sum codes.

XXX Preface

These codes close the mentioned gaps and are able to detect any error
in the transmitted data with non-zero probability.

The decrease of circuit structures to a few nanometers has the ben-
efit of both a reduced area and a reduced power consumption but
unfortunately increases the appearance of faults caused by outer in-
fluences like cosmic radiations. Hence, fault tolerant techniques must
be used to improve the reliability of digital circuitry. One of these
techniques is the extension of the circuit by redundancy such that an
error correction becomes realizable. Low density parity check codes
can be used for this purpose and were successfully applied to improve
the reliability of XOR-only logic network. This requires a split of
the circuit into a linear and a non-linear part. Methods to synthesize
circuits where the linear part is separated from the non-linear part
are explored for adders of different sizes. Both the strong and the
vectorial bi-decompositions contribute to this aim of synthesis.

Another application of a linear circuit is the transformation of in-
completely specified Boolean functions of n variables into a Boolean
space of m variables where m < n. Such a transformation is possi-
ble when the function values are specified only for k input patterns
and the value of k is much smaller than 2™. Applications of this task
are, e.g., the design of on-line real-time control systems or built-in
self-test equipment. The number of variables m of the target space
should be as small as possible. An efficient method of finding a linear
transform that is injective for the k specified input patterns will be
explained. Using the knowledge of the coding theory and the theory
of finite fields a lower bound has been found which strongly reduces
the search space for such a transformation. This lower bound depends
on both the number of variables n and the number of specified input
patterns k. The provided results have interesting connections to linear
error-correcting codes.

The third part of this book deals with problems that the Boolean
domain will be faced with in the future. The continued reduction of
the size of the switching elements brings us closer (and close) to the
level of single atoms and quantum logic. Completely different physical
laws must be considered in this field. The exploration of reversible
circuits can be seen as a bridge between traditional circuit structures
and circuits realized using future quantum technologies.

