
A Soft Error Tolerant LUT Cascade Emulator

Hiroki Nakahara and Tsutomu Sasao
Department of Computer Science and Electronics,

Kyushu Institute of Technology, Iizuka 820-8502, Japan

Abstract

An LUT cascade emulator realizes an arbitrary sequen-
tial circuit. Given a sequential circuit, we convert the com-
binational part into one or more LUT cascades, and store
LUT(cell) data into a memory in the LUT cascade emula-
tor. The emulator evaluates multi-output logic functions by
reading cell data sequentially. To improve the tolerance
to soft errors, cell data in the memory are encoded by er-
ror correcting codes. Also, error-correcting circuits and
checking circuits that periodically scan the memories are
appended. When a soft error is detected, it removes the er-
ror by rewriting the correct data into the memory. To mask
soft errors in flip-flops, a TMR (Triple Module Redundancy)
technique is employed. Our system detects a soft error in a
single bit. Also, the mission time of the system is more than
1000x of time of an ordinary LUT cascade emulator.

1 Introduction

With the decrease of the feature size of LSIs, the de-
crease of the reliability that comes from the variation of
devices or random failure, becomes the problem [8]. Soft
errors induced by thermal neutrons, cosmic rays, or alpha
particles hitting the surface of silicon devices at random,
are irreproducible [7]. Soft errors are the major causes of
random failure. With the reduction of supply voltage and
the size of transistors, the electric charge stored in a semi-
conductor element also decreases. The amount of critical
electric charge that flips the data also decreases. As a re-
sults, soft errors occur not only in the outer space, but also
on the ground. Furthermore, the frequently of soft errors is
not negligible [14].

Many methods to prevent soft errors exist [15]. One
method is to use radiation-hardened devices. However,
such devices are much more expensive than ordinary de-
vices. Furthermore, the performance of radiation-hardened
devices is several generations behind state-of-the-art de-
vices. A realistic, low-cost and high-performance solution
is to add redundancy to the circuits. SRAMs, where each
word is encoded by an ECC (Error Correcting Code), can
detect and correct soft errors. Since a soft error does not

destroy the semiconductor device, we can remove the soft
error by rewriting the correct data to it. For SRAM-based
FPGAs, a technique that periodically checks the configu-
ration data has been developed [5]. When it detects a soft
error in the FPGA, it rewrites the configuration bits.

We have proposed a look-up table (LUT) cascade em-
ulator. An LUT cascade, where multiple-output LUTs are
connected in series, realizes a multiple-output function [19].
An LUT cascade emulator consists of a control part, mem-
ories, and registers. Each register is connected to the pro-
grammable interconnection circuit, and the LUT cascade
emulator evaluates the logic circuit stored in the mem-
ory [19]. The LUT cascade emulator realizes an arbitrary
sequential circuit by storing logic data and its interconnec-
tion data in memories. Compared with an ordinary mi-
croprocessor, the LUT cascade emulator is about 10 times
faster, while its power consumption is smaller. Compared
with FPGAs, the LUT cascade emulator is several times
slower, and power dissipation is larger. However, since the
place and routing design in the LUT cascade emulator is
unnecessary, the design time for the LUT cascade emula-
tor is shorter than FPGAs, and the delay estimation for the
LUT cascade emulator is also more accurate than that of
FPGAs. By applying the method described later in this
paper, the mission time of the LUT cascade emulator can
be improved. For soft errors, our LUT cascade emulator
only need to rewrite a part of the memory, while an FPGA
needs to rewrite all the configurations. In this paper, we will
present a soft error tolerant LUT cascade emulator.

The rest of the paper is organized as follows: Section 2
presents the LUT cascade emulator. Section 3 presents error
models of the LUT cascade emulator. Section 4 presents the
soft error tolerant LUT cascade emulator. Section 5 evalu-
ates the reliability of the proposal method. Finally, Section
6 concludes the paper.

2 LUT Cascade Emulator

2.1 LUT Cascade

An LUT cascade is shown in Fig. 1, where multiple-
output LUTs (cells) are connected in series to realize a

LUT LUT LUT LUT

Figure 1. LUT cascade.

Memory for Interconnection

In
p
u
t R

eg
ister

Memory

for

Logic

Programmable

Interconnection

Network

State Register

Output Register

Control

Network

Shifter

Shifter

Shifter

Memories for Shifter

P
rim

ary
 In

p
u
ts

Figure 2. LUT cascade emulator.

multiple-output function. The wires connecting adjacent
cells are called rails. Also, each cell may have external out-
puts in addition to the rail outputs. Estimation of the delay
time is easier than FPGAs and ASICs, since the intercon-
nections are limited to adjacent cells in the LUT cascade.
We can obtain an LUT cascade by applying functional de-
compositions repeatedly to the BDD (BDD for CF) [12]
that represents the multiple-output function [18]. Thus,
logic synthesis is relatively easy for the LUT cascade.

2.2 LUT Cascade Emulator

Fig. 2 shows an LUT cascade emulator for a sequential
circuit. Although it is slower than the LUT cascade, it is
much more logically flexible than the LUT cascade [19].

The LUT cascade emulator stores the cell data of LUT
cascades in the Memory for Logic; the address lines of cell
are connected from inputs, state variables, and rail outputs
of the preceding cell through the Programmable Intercon-
nection Network; and the Memory for Interconnection
stores data for the interconnections. The LUT cascade em-
ulator reads the cell outputs from the memory for logic, and
send them to the State Register and the Output Register
through Shifters; the Memories for Shifter store data for
the shifters; the Input Register stores the values of the pri-
mary inputs; and the Control Network generates necessary
control signals to obtain function values. The following ex-

From Memory for

Interconnection

From Primary

Inputs and

State Register

T
o
 M

em
o
ry

 fo
r L

o
g
ic

From Rail Inputs

Figure 3. Pro-
grammable inter-
connection network.

Initialize the LUT

cascade Emulator

Generate the address

of cell data
Read the cell data

Perform the state

transision

Last cell Not last cell

Figure 4. State
diagram for LUT
cascade emulator.

ample shows an emulation of a sequential circuit on an LUT
cascade emulator.

Example 2.1 1. Initialize the LUT cascade emulator:
Set the input register, and initialize the state register,
and let cell number← 0.

2. Generate the address of cell data:
The programmable interconnection network connects
the inputs, state variables, and rail outputs of the pre-
ceding cell according to the connection data from the
memory for interconnection.

3. Read the cell data:
Read the content of the memory for logic using address
generated in Step 2. Then, send the values obtained
from the memory for logic to the output register and
the state register through the shifters. If (cell number <
total number of cells), then (cell number← cell number
+1), and goto Step 2.

4. Compute the state transition:
Update the values of the state register. Also, send the
values of the output register to the output terminal, and
go to Step 1. (End of Example)

Fig. 4 shows the state diagram described in Example 2.1.
In an LUT cascade emulator, let c be the number of cells,
n be the number of primary inputs, m be the number of
primary outputs, s be the number of state variables, and r
be the maximum number of rails. In Fig. 3, the number
of control signals for MUXs that selects the primary inputs
and state inputs is �log2n + s�. Also, r MUXs select the
primary inputs or the rail inputs. Thus, the amount of the
memory for interconnection is

Mic = c(�log2(n + s)� + r)[bit]. (1)

The total amount of memory for shifters is

Msift = c(�log2m� + �log2s� + �log2r�)[bit]. (2)

Table 1. Sizes of LUT cascade emulator.
Name #In #Out c r Mic Msift Mlogic

[bit] [bit] [Mbit]
C432 36 7 4 14 1197 28 0.968

C1908 33 25 63 13 80 207 1.000
apex7 49 37 13 14 260 130 1.000

too large 38 3 9 13 171 54 0.500
rot 135 107 201 10 3618 2211 1.000

c:# of cells r:Max. # of rails

Let the amount of the memory for logic (Mlogic) be 1[Mega
bit](32k× 32). We implement several MCNC benchmark
functions [16] on the LUT cascade emulator using our syn-
thesis method [6]. Table 1 shows Mic, Msift, and Mlogic.
It shows that the memory for logic occupies the most chip
area in the LUT cascade emulator.

3 Error Model of the LUT Cascade Emulator

In this section, we will consider the error model of the
LUT cascade emulator.

3.1 Failure Period

We assume that a system consists of multiple elements.
The abnormalities of the output of the system denotes a fail-
ure. Also, the abnormalities of the output of the elements
denotes an error. We assume that failures are caused by one
or more errors. Errors are roughly divided into hard errors
and soft errors. The hard error denotes an element (i.e.
transistor, capacitor, interconnection, etc.) destroyed phys-
ically. The soft error1 also called SEU (Single Event Up-
set), is a bit-flip fault. It occurs when the radiation energy
forms an electric charge on a semiconductor storage ele-
ment. The failure period is divided into three as shown in
Fig. 5 according to the time of the fault. In the early fail-
ure period, failures occur at the manufacture by defects or
inferior materials. We assume that both hard and soft errors
occur in this period. In the intrinsic failure period, fail-
ures occur with a fixed probability. We assume that only
soft errors occur in this period. In the wear-out failure pe-
riod, failures occur by age and fatigue. In this period, both
hard and soft error occur. In this paper, we only consider
the reliability in the intrinsic failure period. To make this
assumption realistic, we detect all the early failures by the
burn-in test.

1In a wider sense, it includes defects of operation that are caused by
the drift of the supply voltage or the temperature. In this paper, we only
consider the influence of radiations.

Time

F
ai

lu
re

 r
at

e

Early

failure

period

Intristic

failure

period

Wear-out

failure

period

Figure 5. Failure
rates.

FF

FF

FF

Majority circuit

Figure 6. TMR flop-
flop.

3.2 Assumption of the Failures

We assume that most failure occur in the memories, since
most chip area for the LUT cascade emulator is occupied by
memories. The early failures are detected by the standard
test for memories [9, 1]. Then, we can mask the failures by
exchanging spare-cells or memory-packing that skips the
failure part of memory cells [17]. Since chips with the early
failures are detected by the burn-in test, we do not consider
the early failures in the intrinsic failure period. We also
assume that, except for the memories, devices have enough
margin. Thus, we can assume that the failure probability of
the devices other than memory is negligibly small. Thus, in
this paper, we only consider soft errors for memories and
flip-flops in the intrinsic failure period.

4 Soft Error Tolerance Technique for LUT
Cascade Emulator

4.1 Assumption of Soft Errors

We assume that soft errors only occur at memory cells
and flip-flops that store electric charge. Also, we only con-
sider a single-bit soft errors in a word.

4.2 A Soft Error Tolerance for Flip-flops

In the advanced design rules of VLSIs, such as 90nm,
65nm, and 45nm, soft errors also occur in flip-flops [10].
Many methods exist to protect against soft errors in flip-
flops: Append a mask latch at inputs and inside of the cir-
cuit [10]; construct a soft error tolerant latch inside the cir-
cuit [11]; and insert a low-pass filter in the latch in order
to mitigate a soft error influence [2]. In this paper, we im-
plement the registers using TMR (Triple Modular Redun-
dancy) flip-flops. Fig. 6 illustrates a TMR flip-flop. To im-
prove the reliability, three flip-flops are used to store a bit,
and the majority for the outputs of three flip-flops is pro-
duced at the output.

Table 2. Number of bits for SEC code
information part (bits) check part (bits)

16 6
32 7
64 8
128 9

Syndrome

generator

Error

position

finder

er
ro

r/

n
o
n
-e

rr
o
r

C
o
rr

ec
t

d
at

a

In
fo

m
at

io
n
 i

n
p
u
ts

C
h
ec

k
 i

n
p
u
ts

Figure 7. A single-error correcting circuit for
the memory using the SEC code.

4.3 Masking Soft Errors in Memory-Cells
using Error Correcting Codes

Error Correcting Codes (ECCs) are used to correct errors
in memories. A SEC (Single Error Correcting) code is a
kind of ECCs. Let SEC(k,q) code be a Hamming code (k+q
bits) that consists of the information part (k bits) and the
check part (q bits). Let �H be a check matrix. Then, the
SEC code �w satisfies the relation �H �wT = 0, where �w con-
sists of k+q bits. Let �k be the information part, and �G be the
generator matrix that satisfies �H �GT = 0. The SEC code is
obtained from the relation �w = �k �G. By checking the syn-
drome �s, we can detect a single-bit error, and specify the
position of the error bit. For the SEC code, since the mini-
mum weight of the row vectors in the generator matrix �G is
three, it can perform single error correction. Table 2 shows
the numbers of bits in the information part and the check
part.

Fig. 7 illustrates a single-error correcting circuit for the
memory using the SEC code. To correct a single-bit error,
the syndrome generator first computes the syndrome from
the inputs. This part is implemented by EXOR gates. Then,
it checks whether the syndrome is zero vector or not. The
error-position finder specifies the position of the error from
the non-zero syndrome vector.

Soft errors in memories are not discovered until they are
read by the LUT cascade emulator. Furthermore, the error
correcting circuit masks the soft error of memory outputs,
while soft errors remain in the memory. If an another soft
error occurs in the word that contains a soft error, then the
error correcting circuit cannot correct two soft errors. Thus,
to avoid such vulnerability, we must restore the words that
contains a soft error before the next soft error occurs. In this

Memory

(SEC Code)

+

1

MBR

M
A

R
M

D
R

SAR

R/W

Error correcting circuit

Correcting data

writting data

address

error/

non-error

Figure 8. Memory with a scan circuit.

+

(a) (b) (c) (d)

R W
+++

Figure 9. Scanning a word.

paper, we show a technique that scans the memory period-
ically to discover the latent soft errors. When a soft error
is discovered, our method rewrites the correct data into the
word that contains the soft error.

4.4 Correction of Latent Soft Errors

Fig. 8 illustrates a memory with a scan circuit: The
MAR (Memory Address Register) retains the address of
memory; the MBR (Memory Buffer Register) retains the
output of memory; the MDR (Memory Data Register) re-
tains the write data of memory; and the SAR (Scan Ad-
dress Register) retains the address for scanning words. The
error correcting circuit was described in Section. 4.3. In
the memory for logic, the memory for interconnection, and
memories for shifters, data are encoded in the SEC codes,
and the scan circuits are attached.

Example 4.2 Fig. 9 illustrates the operations of scanning
a word. While the LUT cascade emulator is distribut-
ing the cell outputs to registers, it increments the address
of the scanning word (Fig. 9(a)). At the rising edge of
the clock, it sends the address of the scanning word to
the MAR (Fig. 9(b)). At the next falling edge of the

clock, it reads the memory, and contents are sent to the
MBR (Fig. 9(c)). Then, the error correcting circuit checks
whether an error exists or not. When an error exists, it sends
the correct data to the MDR (Fig. 9(d)). By rewriting, the
correct data is sent to the memory, and the soft error in the
memory is corrected. (End of Example)

The proposed method does not induce any overhead
time, since it scans and rewrites memories when the LUT
cascade emulator is idle2. The hardware overhead for each
memory is the scan circuit. It consists of multiplexers to se-
lect data for the MAR and the MDR, a scan address gener-
ator (one adder and the SAR), a control circuit for scan and
write-backing, and control signals. Since we use five mem-
ory units (i.e., the memory for logic, the memory for inter-
connection, and three memories for shifters), total hardware
overhead is five scan circuits for memories.

5 Evaluation of Reliability

In this section, we evaluate the reliability of the proposed
system in the LUT cascade emulator. We assume that the
soft error rate for memory cells and flip-flops are the same.

5.1 Analysis of Reliability

The reliability at time t is the probability of proper oper-
ation at time t. Let Rt(t) be the reliability of the circuit for
a 1-bit memory cell or a flip-flop. Then, it can be written as

Rt(t) = e−λt. (3)

Let W be the number of words of the memory, and m be
the number of bits in a word, and RNonSEC(t, m, W) be
the reliability of the memory without the ECC. Then, we
have

RNonSEC(t, m, W) =
i=1∏
W

(
j=1∏
m

Rt(t))

= e−Wmλt. (4)

Let RW (t, m) be the reliability for one word of the memory.
Then, we have

RW (t, m) = e−mλt + m(1 − e−mλt)e−(m−1)λt,(5)

where the first term denotes the probability that no soft er-
ror occurs in a word, and second term denotes the prob-
ability that only one soft error occurs in a word. Let
RSEC(t, m, W) be the reliability of the memory with the
ECC. Then, we have

RSEC(t, m, W) = [RW (t, m)]W

= [me(1−m)λt − (m − 1)e−mλt]W .(6)
2This is true only when the rewriting latency of a memory is one clock.

If the write-back of a memory needs several clocks, we must suspend the
operation.

Table 3 shows the number of bits in a word and the num-
ber of words of the memory. In Table 3, m denotes the
number of outputs of the memory for logic; W denotes the
number of words of the memory for logic; #In denotes
the number of bits of the input register; #Out denotes the
number of bits of the output register; s denotes the number
of bits in the state register; r denotes the maximum number
of bits of the rails; and c denotes the maximum number of
cells. Let RSEC MEM 1(t) be the reliability for five mem-
ories (i.e., the memory for logic with the SEC code and the
other four memories without the support for soft errors) of
the LUT cascade emulator; RSEC MEM 2(t) be the relia-
bility for five memories (the memory for logic without the
support for soft errors and the other four memories with the
SEC code) of the LUT cascade emulator; RSEC MEM 3(t)
be the reliability for five memories with the SEC code of the
LUT cascade emulator; and RNonSEC MEM(t) be the reli-
ability for five memories without any support for soft errors.
Then, we have the following:

RSEC MEM 1(t) = RSEC(t, m, W)
×RNonSEC(t, �log2(#In + s)� + r, c)
×RNonSEC(t, �log2 s�, c)
×RNonSEC(t, �log2 r�, c)
×RNonSEC(t, �log2 #Out�, c) (7)

RSEC MEM 2(t) = RNonSEC(t, m, W)
×RSEC(t, �log2(#In + s)� + r, c)
×RSEC(t, �log2 s�, c)
×RSEC(t, �log2 r�, c)
×RSEC(t, �log2 #Out�, c) (8)

RSEC MEM 3(t) = RSEC(t, m, W)
×RSEC(t, �log2(#In + s)� + r, c)
×RSEC(t, �log2 s�, c)
×RSEC(t, �log2 r�, c)
×RSEC(t, �log2 #Out�, c) (9)

RNonSEC MEM(t) = RNonSEC(t, m, W)
×RNonSEC(t, �log2(#In + s)� + r, c)
×RNonSEC(t, �log2 s�, c)
×RNonSEC(t, �log2 r�, c)
×RNonSEC(t, �log2 #Out�, c) (10)

Let RNonTMR(t) be the reliability for the p-bit register
realized by normal flip-flops. Then, we have

RNonTMR(t) = [Rt(t)]p

= e−pλt. (11)

Let RFF (t) be the reliability for a TMR flip-flop. Then, we
have

RFF (t) = Rt(t)3 + 3Rt(t)2(1− Rt(t)), (12)

Table 3. Numbers of bits for five memories.

Memory type #bits in a word #words
Memory for Logic m W
Memory for Interconnection �log2(#In + s)� + r c
Memory for State Shifter �log2 s� c
Memory for Rail Shifter �log2 r� c
Memory for Output Shifter �log2 #Out� c

0

0.2

0.4

0.6

0.8

1.0

1.2

Time t

R
el

ia
b

il
it

y
R

(t
)

oridinary LUT cascade emulator

only the memory for logic with the SEC code

four memories with the SEC code

all memories with the SEC code

TMR Flip-Flops

the SEC code and TMR Flip-Flops

Figure 10. Reliabilities for six methods.

where the first term denotes the probability that no soft error
occurs in three flop-flops, and the second term denotes the
probability that only one soft error occurs in a flip-flop. Let
RTMR(t) be the reliability for a p-bit register. Then, we
have

RTMR(t) = [RFF (t)]p

= [3e−2λt − 2e−3λt]p. (13)

Fig. 10 compares reliabilities for six meth-
ods: Without the support for any soft errors
(R1(t) = RNonSEC MEM(t)RNonTMR(t)); only
support for soft errors in the memory for logic (R 2(t) =
RSEC MEM 1(t)RNonTMR(t)); without support for soft
errors in the memory for logic but the support for other
four memories (R3(t) = RSEC MEM 2(t)RNonTMR(t));
with support for soft errors for all memo-
ries (R4(t) = RSEC MEM 3(t)RNonTMR(t));
with support for soft errors by TMR flip-flops
(R5(t) = RNonSEC MEM(t)RTMR(t)); and with
support for soft errors for all memories and by TMR
flip-flops (R6(t) = RSEC MEM(t)RTMR(t)).

To compare these methods, we define the Mission Time
Improvement Degree (MTID). Let TR be the time when
the reliability of the system considering soft errors falls to
99%, and TNonR be the time when the reliability of the sys-

Table 4. MTIDs for six methods.

Method MTID
R1 Ordinary LUT cascade emulator 1.0000
R2 Only the memory for logic with SEC code 204.6196
R3 Four memories (exclude the memory for 1.0053

logic) with SEC code
R4 All memories with SEC code 1540.7089
R5 With TMR flip-flops 1.0004
R6 With SEC code and TMR flip-flops 2608.9992

tem without considering soft errors falls to 99 %. Then, we
have the following:

MTID =
TR

TNonR
. (14)

Table 4 compares MTIDs for six methods. From Table 4,
when the SEC code is used only in the memory for logic, the
MTID is 204.6196. When the SEC code is used in all mem-
ories, the MTID is 1540.7089. However, when the SEC
code is used in four memories except for the memory for
logic, the MTID is 1.0053. Since the reliability for mem-
ory for logic is dominant in the LUT cascade emulator, the
improvement of the reliability only for four small memo-
ries hardly improves the total reliability. When TMR flip-
flops are used in the registers but no SEC codes are used
for memories, the MTID is almost the same as an ordinary
LUT cascade emulator. Since the reliability for memories
is dominant in the LUT cascade emulator, the improvement
of the reliability only for flip-flops hardly improves the total
reliability. On the other hand, when both the SEC code and
TMR flip-flops are used, the MTID is 1.69 times larger than
the case where only the SEC codes are used in five mem-
ories. When the reliability for memories is improved, the
MTID greatly depends on the reliability of flip-flops. Thus,
the improvement for the reliability of flip-flops considerably
improves the MTID.

5.2 Memory Scan and Rewrite Time

Let the MTBF (Mean Time Between Failure) be the av-
erage time between two consecutive single-bit soft errors
occur in a word. Then, we have [13],

MTBF =
∫ ∞

0

RSEC(t, m, W)dt, (15)

where RSEC(t, m, W) is given in (6). Let T imeSC be the
scan-rewrite time that is the maximum time to restores a
soft error occurred in the memory. To restore from a single-
bit soft error by the scan circuit, after the first soft error,
the scan and rewrite must be finished before the second soft
error occurs. Thus, we have the relation:

T imeSC ≤ MTBF. (16)

Let Cellmax be the maximum number of cells in the
LUT cascade emulator, Clock be the clock frequency (Hz),
M be the amount of memories (bits), and m be the num-
ber of bits for each word. As shown Fig.4, our LUT cas-
cade emulator uses two clocks for evaluating a cell, and two
clocks for setting the input registers, the output registers,
and performing the state transition. Thus, total number of
clocks for evaluating all cells is 2Cellmax +2. The number
of words for a memory is M

m . Then, we have the relation:

T imeSC = (2Cellmax + 2)× 1
Clock

× M

m
. (17)

We designed a prototype LUT cascade emulator on an
FPGA (Altera Stratix EP1S60F1020C5). When Cellmax =
128, M = 32k×32 (bits), and m = 32 (bits), we obtained
the value Clock = 40 × 106 (Hz). From the prototype,
we confirmed that T imeSC is at most 0.2113 (sec). Let
1000 FIT/Megabit be a soft error rate (neutron + alpha) for
SRAMs3[15]. Note that, n-FIT denotes that n failures occur
in a system per 109 operating hours. Thus, we have λ =
1.0×10−12error/bit·hour. Then, we obtained MTBF =
0.2204× 1010 (sec). We can see that the proposed method
can mask soft errors in memories. If we implement the LUT
cascade emulator by an ASIC, then the proposed method
also masks the errors since it operates at higher speed.

6 Conclusion

This paper shows a soft error tolerant LUT cascade em-
ulator. The cell data in the memories are encoded by er-
ror correcting codes. Also, error-correcting circuits are ap-
pended. Scanning circuits periodically check the memo-
ries. When they detect soft errors, they remove the error by
write-backing the correct data into the memory. To mask the
soft error in flip-flops, a TMR (Triple Module Redundancy)
technique is applied. Our method detects a single-bit soft
error in a word. Also, the mission time of our method is
more than 1000x of an ordinary LUT cascade emulator.

7 Acknowledgment

This research is partly supported by Japan Society for
the Promotion of Science (JSPS), MEXT, and Kitakyushu
Innovative Cluster. Discussions with Prof. Yukihiro Iguchi
and Hideo Ito were quite useful. Discussions with Prof. Jon
T. Butler improved English presentation.

References

[1] A. Iseno, Y. Iguchi, and T. Sasao, “Fault diagnosis for RAMs using
Walsh spectrum,” IEICE Trans. Information and Systems, Vol. E87-
D, No.3, March 2004, pp. 592-600.

3We can also implement the memory for logic by DRAMs.

[2] A. Maheshwari, I. Koren, and W. Burleson, “Techniques for tran-
sient fault sensitivity analysis and reduction in VLSI circuits,” IEEE
Intl. Symp. on Defect and Fault Tolerance in VLSI Systems, 2003,
pp. 597-604.

[3] C. Metra, M. Favalli, and B. Ricc’o, “Novel Berger code checker,”
IEEE Intl. Symp. on Defect and Fault Tolerance in VLSI Systems,
1995, pp. 287-295.

[4] C. V. Frieman, “Optimal error detection codes for completely asym-
metric binary channels,” Inform. Contr., Vol. 5, March 1962, pp.
64-71.

[5] G. H. Asadi, and M. B. Tahoori, “Soft error mitigation for SRAM-
based FPGAs,” IEEE VLSI Test Symp., 2005, pp.207-212.

[6] H. Nakahara, T. Sasao, and M. Matsuura, “A design algorithm for
sequential circuits using LUT rings,” IEICE Trans. Fundamentals
of Electronics, Vol. E88-A, No.12, Dec. 2005, pp. 3342-3350.

[7] H. T. Nguyen, and Y. Yagil, “A systematic approach to SER esti-
mation and solutions,” Proc. of the 41st Intl. Reliability Physical
Symp., Dallas, Texas, 2003, pp. 60-70.

[8] J. M. Rabaey, “Design at the end of the silicon roadmap,” Proc. Asia
and South Pacific Design Automation Conference (ASP-DAC),
Shanghai, Jan., 2005, Volume 1, pp.18-21.

[9] J. T. Chen, J. Rajski, J. Khare, O. Kebichi, and W. Maly, “Enabling
embedded memory diagnosis via test response compression,” IEEE
International Test Conference, 2002, pp.292-298.

[10] M. Nicolaidis, “Time redundancy-based soft-error tolerance to res-
cue nanometer technologies,” Proc. IEEE VLSI TEST Symp., 1999,
pp. 86-94.

[11] M. Omana, “Novel transient fault hardened static latch,” IEEE Intl.
Test Conf., 2003, pp. 88-892.

[12] P. Ashar, and S. Malik, “Fast functional simulation using branching
programs,” ICCAD’95, Nov. 1995, pp.408-412.

[13] P. K. Lala, Fault Tolerant and Fault Testable Hardware Design,
Prentice-Hall International, New York, 1985.

[14] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, L. Alvisi,
“Modeling the effect of technology trends on the soft error rate of
combinational logic,” Proc. of the Intl. Conf. on Dependable Sys-
tems and Networks (DSN’02), Washington D. C., June 2002.

[15] S. Mitra, N. Seifert, M. Zhang, Q. Sbi, and K. S. Kim, “Robust
system design with built-in soft-error resilience,” IEEE Compt.,
Vol. 38, No. 2, , Feb. 2005, pp. 43-52.

[16] S. Yang, “Logic synthesis and optimization benchmark user guide
version 3.0,” MCNC, Jan. 1991.

[17] T. Sasao, M. Kusano, and M. Matsuura, “Optimization methods in
look-up table rings,” IWLS-2004, June 2-4, 2004, Temecula, Cali-
fornia, USA, pp.431-437.

[18] T. Sasao, and M. Matsuura, “A method to decompose multiple-
output logic functions,” Proc. Design Automation Confer-
ence (DAC), San Diego, CA, USA, June 2-6, 2004, pp.428-433.

[19] T. Sasao, Y. Iguchi, and M. Matsuura, “LUT cascades and emulators
for realizations of logic functions,” RM2005, Tokyo, Japan, Sept. 5-
6, 2005, pp.63-70.

