
A Hardware Simulation Engine Based on Decision Diagrams

Yukihiro IGUCHI
y

Tsutomu SASAO
z

Munehiro MATSUURA
z

Atsumu ISENO
y

yDept. of Computer Science zDept. of Electronics and Computer Science

Meiji University Kyushu Institute of Technology

Kawasaki 214-8571, JAPAN Iizuka 820-8502, JAPAN

Abstract { A hardware logic simulation engine based
on decision diagrams is presented. For the data struc-
ture of the engine, we propose PMDDs (Paged reduced
ordered Multi-valued Decision Diagrams). A unit of this
engine consists of memory (RAMs) and control circuit-
s: RAMs store the PMDD data, and the control circuits
trace the edges according to the input vectors. The engine
consists of several units, and is accelerated by pipelining.
Experimental results using a prototype are shown.
Keywords { Logic simulation, Hardware simulation

engine, BDD, MDD, PMDD.

I. Introduction

In this paper, we propose a cycle-based hardware logic
simulation engine, or an engine for short. The paper is
organized as follows: Section 2 introduces logic simula-
tion based on decision diagrams. Section 3 presents an
engine based on a PMDD (Paged reduced ordered Multi-
valued Decision Diagrams). Section 4 shows performance
evaluation and a preliminary experimental result.

II. Logic Simulations Based on Decision

Diagrams

From here, we will review simulation methods based
on DDs (decision diagrams). These methods are theo-
retically much faster than LCC-based ones. In a BDD
(binary decision diagram)[2], each node corresponds to a
variable, and edges labeled with 0 and 1 represent low(v)
and high(v), respectively. We only consider ordered deci-
sion diagrams, where the input variables appear in a �xed
order on all the paths from the root node to a terminal
node.
We can evaluate the function by traversing the BDD

from the root node to a terminal node. Clearly, the eval-
uation time for an n input logic function is O(n). Because
the simulation time of an LCC-based gate level simulator
is O(n2), a DD-based one is O(n) times faster than an
LCC-based one. By using an MDD (multi-valued decision
diagram) [6], we can make the simulator [3] faster. To rep-
resent multiple-output functions, we use SMDD (Shared
reduced ordered Multi-valued Decision Diagram). From
here, SMDDs are simply denoted by MDDs.

De�nition 1 An MDD(k) is the multi-valued decision
diagram where each non-terminal node has 2k edges. Note
that an MDD(1) and a BDD are the same.

Since an MDD(k) evaluates k binary variables at a time,
a logic simulator based on an MDD(k) is k times faster
than one based on a BDD. An MDD(k) is derived from
the corresponding BDD easily [3].

Example 1 Fig. 1(a) shows the BDD for an 8-input
2-output function. Partition the input variables into
(X1;X2; X3; X4), where X1 = (x1; x2), X2 = (x3; x4),
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Fig. 1. BDD and MDD(2).

X3 = (x5; x6), and X4 = (x7; x8). Then, we have the
MDD(2) in Fig. 1(b). By using MDD(2), the simulation
time is reduced into a half, because the path-length from
the root node to the terminal nodes is a half of the BDD.

III. Hardware Simulation Engine

To speed up the engine, we use the following three
methods:

1. Use the DD-based simulation. By this, the engine
will be O(n) times faster than gate level logic simu-
lators.

2. Use MDD(k)s instead of BDDs. By this, the engine
will be k times faster.

3. Use a pipeline of r processing units. By this, the
engine will be r times faster.

A. Operation of Simulation Engine

Fig. 1 shows the concept of the simulation system. The
proposed engine consists of memories and control circuits.
The host computer prepares the data for MDDs represent-
ing the simulation target, and send them to the memories
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of the engine. The host computer also generates input
vectors, and send them to the engine. The engine tra-
verses the MDD according to the values of input vectors,
and returns the value of the function to the host com-
puter. Although the simulation speed is bounded by the
communication speed between the engine and the host
computer, we will not consider it here.
First, we will illustrate the operation of the BDD-based

engine using only one processing unit. Fig. 2 shows the
single-unit engine. The RAMs store the BDD data: Each
non-terminal node has its index and two next addresses
for the 0-edge and the 1-edge.
For anm-output function, we have to traverse the BDD

m times. Thus, the engine shown in Fig. 2 requires the
memory accesses of O(n �m).

B. Speedup of the Engine

In this part, we will show two methods to speed up the
engine. First, by using MDD(k), we will make it k times
faster. Second, by using r processors, we will make it r
times faster.

B.1. MDD(k)

The data for an MDD(k) are stored in the memory
similarly to the case of BDDs. Because the memory access
in an MDD(k) is reduced by a factor of k, the engine will
be k times faster than the BDD-based one. However, in
general, MDD(k)s require more memory than BDDs.

Example 1 Fig. 3 shows the MDD(2) data for Fig. 1.
Along the arrows, by traversing the memory from the ad-
dress 0 to 11, we have the value
f1(x1; x2; x3; x4; x5; x6; x7; x8)=f1(0;1; 1; 1; 1; 1; 1; 0) = 1.
As shown in Fig. 1(b), the MDD(2) has non-terminal n-
odes. While, BDD=MDD(1) has 19 non-terminal nodes.
However, each non-terminal node in MDD(k) requires 2k

next addresses.

B.2. Speedup by Pipelining

When only one memory system is used to store a deci-
sion diagram, we can evaluate the value for only one input
vector at a time. In this part, we propose a PMDD(k, r)
(Paged reduced ordered Multi-valued Decision Diagram),
which is an MDD(k) partitioned into r pages. Fig. 4 shows
the concept of the engine having r processing units. In
the PMDD-based engine, each processing unit has an in-
dependent memory system and a control circuit. Since
the number of nodes in each page is smaller than the case
of the single MDD(k), the memory for storing the index
and the next addresses can be reduced. Since these unit-
s work in parallel, the engine consisting of r processing
units has the r-fold throughput.
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Fig. 3. MDD(2) data for Fig. 1(b) and simulation procedure.
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Fig. 4. Concept of the pipelined engine.

De�nition 1 Basic terminology and parameters of the
engine are follows:

� Page: A memory having t primary inputs.

� Unit: A hardware consisting one page of memory and
a control circuit.

� Pipeline: A series connection of r units.

� n: The number of the primary input variables.

� m: The number of the primary outputs.

� r: The number of pages = the number of units = the
number of pipeline steps.

� t: The number of the primary input variables in a
page.

� wi (i = 1; 2; . . . ; r): Width of an MDD(k), where
w1 = m.

� k: The number of control variables in an MDD (in
the case of a BDD, k = 1).

De�nition 2 (Paged reduced ordered MDD: PMDD(k,
r).)
Let the input variables be X = (x1; x2; . . . ; xn), where
n = t � r. Consider the MDD which always has nodes
at the (t � s+ 1)th level in all the path from root nodes to
terminal nodes (s = 1; . . . ; r � 1). The �rst page consists
of the level 1 through the level t; the second page consists
of the level t+1 through the level 2t; and so on. A PMDD
has the following properties:

1. In a page, di�erent nodes represent di�erent func-
tions. (Two nodes in di�erent pages may represent
the same function.)

2. Each edge from a node is connected to an another
node in the same page, or to a node in the 1st level
of the next page.
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Fig. 5. PMDD(2; 2) for the function in Fig. 1(b).

A PMDD(k; r) denotes an MDD(k) partitioned into r
pages. Note that a PMDD(1; 1) is an BDD, while a
PMDD(1; n) is a QROBDD (Quasi-Reduced Ordered B-
DD). In the QROBDD, every variable appears along ev-
ery path from the root node to the constant nodes [7]. A
PMDD(k; r) is the MDD(k) consisting of r pages where
nodes always exist in the 1st level of each page.

Let size(DD; f) be the number of nodes in the DD for
f . Then, we have the following:

Theorem 1

size(PMDD(1; 1); f ) � size(PMDD(1; r); f )
� size(PMDD(1; n); f), where 1 � r � n.

A PMDD(k; r) has the following merits:

1. It is a data structure suitable for pipelining.

2. Since the next addresses are limited to a page, the
size for the next addresses and the index can be s-
maller.

Example 2 Let us partition the the MDD(2) in Fig. 1(b)
into two pages. Fig.5 is the PMDD(2; 2). In this case, x1
through x4 are in the �rst page, and x5 through x8 are in
the second page. Note that some non-terminal nodes are
appended to the boundary of the pages. The processor of
the �rst page transfers the start address to the processor
of the second page. Let width (wi) be the number of n-
odes in the boundary, where w1 = m. In Fig. 4, inputs
S1; . . . ; Slw1

in the �rst unit speci�es the function to be
evaluated. In Fig. 5, w1 = 2 and w2 = 5. Fig. 6 shows
the memory data for the PMDD(2; 2) in Fig. 5.

To construct a PMDD(k; r), we use the following strate-
gies:

� Partition the MDD(k) into the pages so that the
numbers of variables in the units are almost the same.
This will reduce the cycle time of the pipelined en-
gine.

� Partition the MDD(k) into the pages so that each
page can be stored in the memory of the unit. For
example, the boundary of the page should be the
level with a small width. If necessary, the variable
ordering of the MDD(k) should be changed.
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Fig. 6. Memory representation of PMDD(2; 2) shown in Fig. 5.

A non-pipelined engine based on a PMDD(1, 1) requires
n �p steps to simulate p input vectors. A pipelined engine
based on a PMDD(k, r) requires (n � p=k) steps to simu-
late for p input vectors, while the throughput is r times of
PMDD(k, 1): In each n=(k �r) step, we obtain the simula-
tion result. Therefore, the speedup rate for PMDD(k; r)
over PMDD(1; 1) is k � r.

IV. Performance Evaluation

A. Memory Requirement for PMDD(k; r)

Table 1 compares the number of nodes in PMDD(k; 1),
(k = 1; 2; 3; 4; 5) for ISCAS benchmark circuits. For ex-
ample, C3540 has 50 inputs and 22 outputs, and the
PMDD(k; 1) (k = 1; 2;3; 4; 5) has 34689, 24478, 19122,
16841, and 12089 non-terminal nodes, respectively. Ta-
ble 1 shows that the number of nodes decrease when k
is increased. Note that each node requires 2k addresses.
We used the heuristic algorithm [4] to obtain the order-
ing of the input variables for PMDD(k; 1)s. However, the
ordering that minimizes the BDD does not always mini-
mize the PMDD(k; 1) (k � 2). For C6288, which is the
16-bit multiplier, we could not build the PMDD, so it is
not shown in the table. For other benchmark functions,
we could build the PMDDs, and their widths (i.e., the
number of nodes in the boundary) were not so large.

De�nition 1 Let MT (k; r)[Words] be the total
amount of memory for the PMDD(k; r). Let #max nodes
be the maximum number nodes in one page among all the
pages in the PMDD(k; r). We assume that the memory
size of the engine is a multiple of 16. That is, one word
consists of 16 bits. Let dae denote the smallest integer
greater than or equal to a. We also assume that each
page has the same amount of memory.

MT (k; r) is derived as follows:

� For an index, we need ddlog
2
dn=kee=16e words.
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TABLE 1
Number of nodes in PMDD(k, 1).

Func In Out PMDD(k,1)
k = 1 k = 2 k = 3 k = 4 k = 5

C432 36 7 1069 619 542 326 380

C499 41 32 27845 13543 9029 6319 5797

C880 60 26 4141 3030 2544 1924 1728

C1908 33 25 7432 4426 2869 2379 1589

C2670 233 140 2712 2345 1932 1779 1635

C3540 50 22 34689 24478 19122 16841 12089

C5315 178 123 2446 1968 1620 1462 1346

C7552 207 108 2841 2301 1913 1655 1462

TABLE 2
Total memory size MT (1; r).

Func In Out MT (1; r)
1 2 4 8 16 32

C432 36 7 6 6 6 6 12 12

C499 41 32 96 192 192 384 384 384

C880 60 26 24 24 48 48 96 96

C1908 33 25 24 48 48 48 96 96

C2670 233 140 12 24 24 48 48 96

C3540 50 22 192 192 384 384 768 768

C5315 178 123 12 12 24 24 48 48

C7552 207 108 12 12 12 24 24 48

[ kilo words]

� For a pointer addressing the next node, we need
ddlog2(#max nodes)e=16e words.

� For each node, we need 2k pointers.

� The total number of nodes in one page is
2dlog2(#max nodes)e.

� The total number of pages is r.

Thus, the total amount of memory is obtained as:

MT (k; r)=(ddlog2dn=kee=16e+ 2k

�ddlog2(#max nodes)e=16e)

�2dlog2(#max nodes)e
� r[words] (1)

By using an PMDD(k; r), we can make the simulation
r � k times faster than an PMDD(1; 1).

B. Prototype of the Simulation Engine

We developed a prototype of an engine based on P-
MDD(1, 2)s. Each unit consists of 160 kilo bytes of S-
RAM and control circuits implemented by XILINX C-
PLDs (XC95108-10PC84). The benchmark functions are
represented by PMDD(1; 2)s. Input vectors are random
patterns generated by an LFSR (linear feedback shift reg-
ister). The prototype engine works at 18MHz. Table 4
compares performance of the engine with the software

TABLE 3
Total memory size MT (k; r) for C2670.

r

1 2 4 8 16 32

1 12 24 24 48 48 96
2 20 40 40 40 80 160

k 3 18 36 72 72 144 144

4 34 68 136 136 136 272
5 66 132 264 264 528 528

[ kilo words]

TABLE 4
Comparison of PMDD(1; 2)-based engine with software

simulation.

Function In Out Prestissimo Engine

C432 36 7 3.2 7.0

C880 60 26 19.2 43.4

C1908 33 25 7.6 23.5

C2670 233 140 55.6 910.0

C5315 178 123 112.8 607.6

C7552 207 108 46.5 624.2

[�sec/vector]

simulator [3]. By the limitation of the memory, we could
not perform the simulation for C499 and C3540.

C. Observation
A preliminary experiment by using PMDD(1; 2) demon-

strates the usefullness of the approach. If we use
PMDD(k; r)s with r = 8 � 16, and k = 4, then we
can make it 16 � 32 times faster. If we use the DDs
that have multiple terminals (0 � � � 00), (0 � � � 01),. . ., and
(1 � � � 11) instead of two terminals, then several functions
can be evaluated at the same time [5]. Another method
to speed up is to use characteristic functions [1, 3]. Such
recon�guration is possible by just changing the program
for CPLDs. By using these methods, we can build a high
performance engine without increasing the clock frequen-
cy.

V. Conclusion

In this paper, we proposed a hardware logic simulation
engine based on PMDDs. It is a pipelined MDDs with
control circuits, and can be faster than the corresponding
software implementation. The preliminary experiment us-
ing a prototype showed promising results. With these re-
sults, we are building a larger scale engine. Experimental
results for larger con�gurations will be reported in the
�nal paper.
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