
An Architecture for IPv6 Lookup Using Parallel Index
Generation Units

Hiroki Nakahara1, Tsutomu Sasao2, and Munehiro Matsuura2

1 Kagoshima University, Japan
2 Kyushu Institute of Technology, Japan

Abstract. This paper shows an area-efficient and high-speed architecture for
IPv6 lookup using a parallel index generation unit (IGU). To reduce the size
of memory in the IGU, we use a liner transformation and a row-shift decom-
position. Also, this paper shows a design method for the parallel IGU. A single
memory realization requires O(2n) memory size, where n denotes the length of
prefix, while the IGU requires O(nk) memory size, where k denotes the number
of prefixes. In IPv6 prefix lookup, since n is at most 64 and k is about 340 K,
the IGU drastically reduces the memory size. Since the parallel IGU has a simple
architecture compared with existing ones, it performs lookup by using complete
pipelines. We loaded more than 340 K IPv6 pseudo prefixes on the Xilinx Virtex 6
FPGA. Its lookup speed is higher than one giga lookups per second (GLPS). As
for the normalized area and lookup speed, our implementation outperforms exist-
ing FPGA implementations.

1 Introduction

1.1 Demands for Lookup Architecture in IPv6 era

The core routers forward packets by IP-lookup using longest prefix matching (LPM).
With the rapid growth of the Internet, LPM has become the bottleneck in the network
traffic management. The following conditions must be satisfied to solve the problems:

High speed lookup: When a core router works at more than 40 Gbps link through-
put (OC-768), it requires more than 125 million lookups per second (MLPS) for a min-
imum packet size (40 bytes). Now, a 100 Gbps link requires more than 320 MLPS, and
the next generation router requires 400 Gbps link.

Low-power consumption: R. Tucker predicted that, with the rapid increase of traf-
fic, core routers would dissipate the major part the total network power dissipation [14].
Thus, we cannot use power-hungry ternary content addressable memories (TCAMs).
Le et al. proposed the memory-based IP lookup architecture on the FPGA, which dis-
sipate lower power than the TCAM [5]. This paper also considers a method that uses a
memory-based architecture.

Reconfigurability: On Feb. 3, 2011, IPv4 addresses maintained by Internet As-
signed Numbers Authority (IANA) are depleted. Since transition from IPv4 addresses

0

2000

4000

6000

8000

10000

12000

Year

#
 o

f
P

re
fi

x
es

04 05 06 07 08 09 10 11 12

10945

(3rd, Nov., 2012)

Fig. 1. Numbers of IPv6 prefixes in the routing table for border gateway protocol (BGP).

to IPv6 addresses are encouraged, IPv6 addresses are widely used in core routers. How-
ever, since it is a transition period, specifications for IPv6 address are changed fre-
quently3. Thus, reconfigurable architecture is necessary to accomodate the changes of
specifications.

Large-capacity: As shown in Fig.1, on Nov. 3, 2012, the number of raw IPv6 ad-
dress in the border gateway protocol (BGP) was about 10 K. The number of IPv4 ad-
dresses increased by 25-50 K prefixes per year [2]. Also, the number of IPv6 addresses
increases with the rapid growth. Thus, large-capacity routers are necessary for the future
IPv6.

1.2 Proposed Architecture and Contributions of the Paper

This paper proposes a memory-based architecture satisfying the four conditions. When
IPv6 prefixes with length n are loaded in a single memory, the amount of memory
would be O(2n), which is too large to implement. In this paper, we use a parallel index
generation unit (IGU) that reduces the total amount of memory to O(kn), where k de-
notes the number of prefixes [9]. Also, since the parallel IGU has a simpler architecture
than existing ones, it performs a fast lookup by using pipelines. Our contributions are
as follows:

1. We loaded more than 340 K pseudo IPv6 prefixes on the parallel IGU implemented
on a single FPGA. Its performance is more than 1 GLPS (Giga lookups per second)
lookup. As far as we know, this is the first implementation of 1 GLPS engine on a
single FPGA.

2. We reduced the total amount of memory for IGUs by using both a linear transforma-
tion and a row-shift decomposition. This paper reports of the first implementation
of LPM architecture using the parallel IGU.

3. We compared the parallel IGU with existing implementations on FPGA, and showed
that the parallel IGU outperforms others.

The rest of the paper is organized as follows: Chapter 2 introduces an architecture
for LPM; Chapter 3 shows the IGU and its memory reduction method; Chapter 4 shows
the design method for the parallel IGU; Chapter 5 shows the experimental results; and
Chapter 6 concludes the paper.

3 IPv4-compatible IPv6 addresses are abolished. Also, site-local addresses would be abolished.

2

0

1000

2000

3000

4000

1 32 36 40 44 48 64

IPv6 Prefix Length

#
 o

f
P

re
fi

x
es

4564

(41.7%) 4043

(36.9%)

290
(2.6%)

351
(3.2%)

494
(4.5%)

5000

Fig. 2. Distribution of raw IPv6 prefixes (Nov. 3, 2012) [6].

2 Architecture for IPv6 Prefix Lookup

2.1 IPv6 Prefix
The IPv6 address (128 bits) is an extension of the IPv4 address (32 bits). This extension
accommodates much larger number of addresses than IPv4. An IPv6 address consists
of 64 bits network prefix (prefix) and 64 bits interface ID. Since only prefixes are used
by the core routers to make forwarding decisions, this paper considers an architecture
for the IPv6 prefix lookup. Similar to IPv4 prefix, an IPv6 prefix follows the variable-
length subnet masking (VLSM) rule. It consists of n bits network ID and (64− n) bits
sub-network ID. The prefix consists of the following information with bit length:

– FP (Fixed Prefix): 3 bits represented by “001”. It means a global unicast accepting
route aggregation.

– TLA (Top-Level Aggregation) ID: 13 bits
– sub-TLA: 13 bits
– RES (Reserved for future use): 6 bits
– NLA (Next-Level Aggregation) ID: 13 bits
– SLA (Site-Level Aggregation) ID: 16 bits

Fig. 2 shows the distribution of raw IPv6 prefixes (Nov. 3, 2012) [6]. We observe
that variance of the numbers of prefixes with different lengths are quite large. In this
paper, we utilize this property to reduce the amount of hardware.

Index Generation Unit

(IGU) for Prefix /64

IGU

for Prefix /63

IGU

for Prefix /1

P
ri
o
ri
ty

 E
n
c
o
d

e
r

Matched

Index
Input

Prefix

Fig. 3. Architecture for an LPM function.

2.2 Longest Prefix Matching (LPM) Function [12]
Definition 2.1 The LPM table stores ternary vectors of the form V EC1 ·V EC2, where
V EC1 consists of 0′s and 1′s, and V EC2 consists of ∗′s (don’t cares). The length of
prefix is the number of bits in V EC1. To assure that the longest prefix address is pro-
duced, entries are stored in descending prefix length. The LPM function is the logic
function f : Bn → Bm, where f(x) is a minimum address whose V EC1 correspond-
ing to x. Otherwise, f(x) = 0m.

3

Let Pl be the subset of the prefixes with length l, and P = {P1, P2, . . . Ps} be a set
of subsets of the prefixes. Each Pl is represented by an index generation function [10].

Definition 2.2 [10] A mapping F (X) : Bn → {0, 1, . . . , k}, is an index generation
function with weight k, where F (ai) = i (i = 1, 2, . . . , k) for k different regis-
tered vectors, and F = 0 for other (2n − k) non-registered vectors, and ai ∈ Bn

(i = 1, 2, . . . , k). In other words, an index generation function produces unique indices
ranging from 1 to k for k different registered vectors, and produces 0 for other vectors.

Example 2.1 Table 1 shows an index generation function with weight seven.

An LPM function can be decomposed into a set of index generation functions. Thus,
this paper focuses on a compact realization of an index generation function.

2.3 Architecture for an LPM function

Fig. 3 shows an architecture for an LPM function realized by index functions with
weight k for Pl and a priority encoder, where k equals to the number of prefixes in Pl.
When we realized an index generation function for Pl by a single memory, the memory
size becomes O(2l), which is too large for large l. This paper uses an index generation
unit (IGU) with O(k) memory size.

Table 1. Example of an index generation function f .

x1 x2 x3 x4 x5 x6 f

0 0 0 0 1 0 1
0 1 0 0 1 0 2
0 0 1 0 1 0 3
0 0 1 1 1 0 4
0 0 0 0 0 1 5
1 1 1 0 1 1 6
0 1 0 1 1 1 7

Table 2. Decomposition chart for f(X1, X2).

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 x5
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 x4
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 x3
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 x2

00 0 0 0 0 0 0 0 0 1 2 3 0 0 0 4 0
01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 5 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0
11 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0

x6, x1

Main

memory AUX

memory

Comparator

ANDp

n-p

n-p

 )1(log2 +k

X1

X2
X'2

q=

Fig. 4. Index Generation Unit (IGU).

3 Index Generation Unit (IGU)

Table 2 is a decomposition chart for the index generation function f shown in Table 1.
The columns labeled by X1 = (x2, x3, x4, x5) denotes the bound variables, and rows
labeled by X2 = (x1, x6) denotes the free variables. The entry denotes the function

4

value. We can represent the non-zero elements of f by the main memory f̂ whose input
is X1. The main memory realizes a mapping from a set of 2p elements to a set of k + 1
elements, where p = |X1|. The output for the main memory does not always represent
f , since f̂ ignores X2. Thus, we must check whether f̂ is equal to f or not by using
an auxiliary (AUX) memory. To do this, we compare the input X2 with the output
for the AUX memory by a comparator. The AUX memory stores the values of X2

when the value of f̂(X1, X2) is non-zero. Fig. 4 shows the index generation unit (IGU).
First, the main memory finds the possible index corresponding to X1. Second, the AUX
memory produces the corresponding inputs X ′

2 (n − p bits). Third, the comparator
checks whether X ′

2 is equal to X2 or not. Finally, the AND gates produce the correct
value of f .

Comparator

X1

X2

0470632100000005f

1010101010101010x2

1100110011001100x3

1111000011110000x4

1111111100000000x5

0470632100000005f

1010101010101010x2

1100110011001100x3

1111000011110000x4

1111111100000000x5

017

116

015

004

003

002

001

x1x6

017

116

015

004

003

002

001

x1x61011

11

4

3

2

2

3
3

Main Memory

AUX

Memory

Fig. 5. IGU for Table 1.

Example 3.2 Fig. 5 shows an example of the IGU realizing the index generation func-
tion shown in Table 1. When the input vector is X(x1, x2, x3, x4, x5, x6) = (1, 1, 1, 0, 1, 1),
the corresponding index is “6”. First, the main memory produces the index. Second, the
AUX memory produces the corresponding value of X ′

2. Third, the comparator checks
whether X2 and X ′

2 are equal. Since the corresponding input X2 is equal to X ′
2, the

AND gates produces the index. In this case, n = 6, p = 4, and q = 3.

Example 3.3 To realize the index generation function f shown in Table 1, a single
memory realization requires 26 × 3 = 192 bits. On the other hand, in the IGU shown
in Fig. 5, the main memory requires 24 × 3 = 48 bits, and the AUX memory requires
23× 2 = 16 bits. Thus, the IGU requires 64 bits in total. In this way, we can reduce the
total amount of memory by using the IGU.

Example 3.2 is an ideal case. Actually, a column may have two or more than non
zero-elements. In such a case, the column has a collision. When a collision occurs, a
main memory cannot realize a function.

Example 3.4 Table 4 shows a decomposition chart for an index function f ′ shown in
Table 3. In Table 4, the first column has a collision for elements “5” and “6”.

3.1 Linear Transformation [8]

Let f̂(Y1, X2) be the function whose variables X1 = (x1, x2, . . . , xp) are replaced
by Y1 = (y1, y2, . . . , yp), where yi = xi ⊕ xj , xi ∈ {X1}, xj ∈ {X2}, and p ≥

5

Table 3. An index generation function
f ′ causing a collision.

x1 x2 x3 x4 x5 x6 f ′

0 0 0 0 0 1 1
0 0 0 0 1 0 2
0 0 0 1 0 0 3
0 0 1 0 0 0 4
0 1 0 0 0 0 5
1 0 0 0 0 0 6

Table 4. Decomposition chart for f ′(X1, X2).

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 x3
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 x4
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 x5
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 x6

00 1 2 3 4
01 5
10 6
11

x1, x2

Table 5. Decomposition chart for f̂ ′(Y1, X2).

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 y1 = x3 ⊕ x1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 y2 = x4 ⊕ x1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 y3 = x5
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 y4 = x6

00 1 2 3 4
01 5
10 6
11

x1, x2

dlog2(k + 1)e. This replacement is called a linear transformation, which can avoid a
collision.

Example 3.5 Let f ′ be an index generation function shown in Table 3. Table 5 shows
the decomposition chart for f̂ ′(Y1, X2), where Y1 = (x3⊕x1, x4⊕x1, x5, x6), and the
column labels denote Y1, and the row labels denote X2. In Table 5, since no collision
occurs, it can be realized by the IGU shown in Fig. 4.

The linear transformation for p variables is realized by p copies of two-input EX-
ORs. In an FPGA, since these can be realized by p LUTs, their amount of hardware is
negligible small.

As shown in Example 3.5, index generation functions often can be represented with
fewer variables than original functions. By increasing the number of inputs p for the
main memory, we can store virtually all vectors.

Conjecture 3.1 [9] Consider a set of uniformly distributed index generation functions
with weight k (≥ 7). If p ≥ dlog2(k + 1)e − 3, then, more than 95% of the functions
can be represented by an IGU with the main memory having p inputs.

Thus, for the IPv6 prefix lookup problem, a linear transformation of p variables can
reduce the amount of memory O(2n) into O(2p).

Table 6. Decomposition chart for f̂ ′(Y1).

0 0 0 0 1 1 1 1 y1
0 0 1 1 0 0 1 1 y2
0 1 0 1 0 1 0 1 y3

0 5 2 3 4 6
1 1
y4

Table 7. decomposition chart for f̂ ′ after row-shift.

0 0 0 0 1 1 1 1 y1
0 0 1 1 0 0 1 1 y2
0 1 0 1 0 1 0 1 y3

0 5 2 3 4 6
1 → → → 1
y4

3.2 Row-shift Decomposition [7]

In this part, we introduce a row-shift decomposition to further reduce of memory size
for the IGU. Table 6 shows a decomposition chart for the index generation function

6

f̂ ′(Y1, Y2), where Y1 = (x3 ⊕ x1, x4 ⊕ x1, x5) and Y2 = (x6). In Table 6, the first
column has a collision for the entries “1” and “5”. Consider the decomposition chart
shown in Table 7 that is obtained from Table 6 by shifting the rows for y4 = 1 by three
bit to the right. Table 7 has at most one non-zero element in each column. Thus, the
modified function can be realized by a main memory with inputs Y1.

HX1

X2

G

h(X1)

h(X1)+X2

g(h(X1)+X2)+

Fig. 6. Row-shift decomposition.

Let X1 be the row variables, and X2 be the column variables. In Fig. 6, assume that
the memory for H stores the number of bits to shift (h(X1)) for each row specified by
X1, while the memory for G stores the non-zero element of the column after the shift
operation: h(X1) + X2, where “+” denotes an unsigned integer addition. We call this
a row-shift decomposition.

31

00

hy4

31

00

hy4

0

6

0

4

1

3

2

5

g

0

1

0

0

0

0

0

0

x1

0

0

0

0

1

0

0

0

y4

0

0

0

0

0

0

0

1

x2

111

011

101

001

110

010

100

000

y3y2y1

0

6

0

4

1

3

2

5

g

0

1

0

0

0

0

0

0

x1

0

0

0

0

1

0

0

0

y4

0

0

0

0

0

0

0

1

x2

111

011

101

001

110

010

100

000

y3y2y1

Comparator

+ AND

x1

x2

x3

x4

x5

x6

Linear

Circuit

Memory

for H

Memory for G

Fig. 7. IGU using a linear transformation and a row-shift decomposition.

Example 3.6 Fig. 7 shows the IGU using a linear transformation and a row-shift de-
composition realizing f ′ shown in Table 3. LetY = (Y1, Y2), where Y1 = (x3⊕x1, x4⊕
x1, x5), and Y2 = (x6). First, EXOR gates generates Y . Second, the first memory for
h produces the shift value h(Y1). Third, the adder produces h(Y1) + Y2. In this imple-
mentation, since we realize both the main memory and the AUX memory by a single
memory, the second memory g produces the index and the corresponding (y4, x1, x2)
simultaneously. Next, the comparator checks if they are equal or not. Finally, the AND
gates produces the correcting index.

Example 3.7 To realize f ′ shown in Table 3, a single memory realization requires 26×
3 = 192 bits. On the other hand, in the IGU shown in Fig. 7, the first memory for H
requires 21× 3 = 6 bits, and the second memory for G requires 23× (3+3) = 48 bits.

7

Thus, the IGU requires 54 bits in total. In this way, we can reduce the total amount of
memory by using a linear transformation and a row-shift decomposition.

4 Design of Parallel IGU

4.1 Method to Find Linear Transformation

From here, we present a method to find a linear transformation. We assume that the
prefix lookup architecture updates its prefix patterns. In this case, it is impractical to
find an optimum solution by spending much computation time. To find a reasonably
good setting of the EXOR gates, we use the following heuristic algorithm [10], which
is simple and efficient.

Algorithm 4.1 Let f(X1, X2) be the index generation function of n variables with
weight k, and let p = dlog2((k + 1)/3)e + 1 be the number of the bound variables in
the decomposition chart.

1. Let {X1} = (x1, x2, . . . , xp) be the bound variables, and X2 = (xp+1, xp+2, . . . , xn)
be the free variables.

2. While |X1| ≤ p, find variables xi ∈ {X2} that makes the following value minimum.

|(# of vectors withxi = 0)− (# of vectors withxi = 1)|.

Let X1 ← X1 ∪ {xi}.
3. For each pair of variables (xi, xj), where xi is a bound variables, and xj is a free

variables, if the exchange of xi with xj decreases the number of collision, then do
it, otherwise discard it.

4. For each pair of variables (xi, xj), if the replacement of xi with yi = xi ⊕ xj

decreases the number of collisions, then do it, otherwise discard it.
5. Terminate.

4.2 Design of IGU Using Row-Shift Decomposition [7]

For Table 7, we could represent the function without increasing the columns. However,
in general, we must increase the columns to represent the function. Since each column
has at most one non-zero element after the row-shift operations, at least k columns are
necessary to represent a function with weight k. We use the first-fit method [13], which
is simple and efficient.

Algorithm 4.2 (Find row-shifts)

1. Sort the rows in decreasing order by the number of non-zero elements.
2. Compute the row-shift value for each row at a time, where the row displacement

r(i) for row i has the smallest value such that no non-zero element in row i is in
the same position as any non-zero element in the previous rows.

8

3. Terminate.

When the distribution of non-zero elements among the rows is uniform, Algo-
rithm 4.2 reduces the memory size effectively. To reduce the total amount of memories,
we use the following:
Algorithm 4.3 (Row-shift decomposition)

1. Reduce the number of variables by the method [9]. If necessary, use a linear trans-
formation [8] to further reduce the number of the variables. Let n be the number
of variables after reduction.

2. Let q1 ← dn
2 e. From t = −2 to t = 2, perform Steps 3 through 6.

3. Partition the inputs X into (X1, X2),where X1 = (xp, xp−1, . . . , x1) denotes the
rows, and X2 = (xn, xn−1, . . . , xp+1) denotes the columns.

4. p← q1 + t.
5. Obtain the row-shift value by Algorithm 4.2.
6. Obtain the maximum of the shift value, and compute the total amount of memories.
7. Find t that minimizes the total amount of memories.
8. Terminate.

0

0

0

x2

3**0

2*10

1100

fx4x3x1

0

0

0

x2

3**0

2*10

1100

fx4x3x1

21100

30000

0

0

x2

2010

1100

fx4x3x1

21100

30000

0

0

x2

2010

1100

fx4x3x1Prefix

Expansion

Fig. 8. Example of prefix expansion.

4.3 Prefix Expansion

Let Pl be the set of the prefixes with length l, and let P = {P1, P2, . . . Ps} be the set of
the set of the prefixes. As shown in Fig. 3, the parallel IGU consists of s IGUs and a pri-
ority encoder whose size is proportional to s. Thus, the straightforward implementation
requires large amount priority encoder and many IGUs.

To reduce the number of required IGUs, we merge multiple Pl into a group. By
expanding the prefixes in Pl to ones with length l + 1, we can make a group including
Pl+1 and Pl. We call this prefix expansion. The next example shows it.
Example 4.8 The left-hand side Table in Fig. 8 stores {P2, P3, P4}, where P2 = {00 ∗
∗}, P3 = {001∗}, P4 = {0001}. By performing prefix expansion to P2, we have P ′

3 =
{000∗, 001∗}. By the longest prefix matching (LPM) rule, the prefix {001∗} that is
equal to {001∗} in P3 is ignored. Also, by performing prefix expansion to P ′

3, we have
P ′

4 shown in the right-hand side Table in Fig. 8.
Fig. 2 shows that the variance of the numbers of prefixes with different lengths Pl is

quite large. When the prefix expansions to Pl consisting of a small number of prefixes
is applied, they can be stored into a single BRAM 4. On the other hand, when the prefix
expansion to Pl consisting of a large number of prefixes is applied, in the worst case,
the size would exceed that of the available BRAMs. Thus, we make a non-uniform
grouping Gi G = {G1, G2, . . . , Gr}, where Gi is generated from the different number
of Pl. To find an optimal grouping without increasing BRAMs, we use the following:

4 For Xilinx Virtex 6 FPGA, the BRAM stores 36Kbits.

9

Table 8. The number BRAMs to realize IGUs with non-uniform grouping (BRAMs marked with
“*” were realized by distributed RAMs in the actual implementation).

Group #prefixes Memory H Memory G # of 36Kb
in a group #In #Out #In #Out BRAMs

(15,16,17,18) 102 4 6 7 18 2 *
(19,20,21,22) 225 7 7 8 22 2 *
(23,24,25,26) 1,571 10 11 11 26 3 *
(27,28) 806 6 11 11 28 3 *
(29,30) 1,240 6 12 12 30 5 *
(31) 2,824 9 12 12 31 5 *
(32) 8,474 9 14 14 32 16
(33) 1,469 8 11 11 33 3 *
(34) 4,408 10 12 12 34 5 *
(35) 2,318 10 11 13 35 9
(36) 6,957 11 13 13 36 9
(37) 4,079 13 12 12 37 8
(38) 12,237 14 14 14 38 24
(39) 6,592 12 12 13 39 11
(40) 19,776 13 14 14 40 22
(41) 6,874 13 13 13 41 12
(42) 20,623 14 15 15 42 42
(43) 9,451 14 14 14 43 27
(44) 28,354 13 15 15 44 47
(45) 8,522 13 14 14 45 24
(46) 25,569 14 15 15 46 48
(47) 42,768 14 16 16 47 92
(48) 128,305 14 17 17 48 179
(49,50) 929 10 10 10 50 3*
(51,52) 1,048 11 11 11 52 4*
(53,54) 594 9 10 10 54 3*
(55,56) 421 8 9 9 9 2*
(57,58) 530 9 9 9 58 2*
(59,60,61,62) 289 7 8 9 62 2*
(63,64) 386 8 9 9 64 2*
Total 347,749 616

Table 9. Comparison of non-uniform grouping with uniform ones.

Grouping #prefixes #groups #BRAMs #Slices
Non-uniform (Table 8) 347,749 30 616 2,299
without grouping (direct realization of P) 348,877 50 655 3,979
Uniform for two subsets 382,132 25 785 1,899
Uniform for four subsets 1,250,695 13 2,512 939

Algorithm 4.4 (Non-uniform grouping) Let Pl be the set of the prefixes with length l,
P = {P1, P2, . . . , Ps} be the set of the prefixes, Gj consists of single or several Pls, r
be the number of groups, and G = {G1, G2, . . . , Gr}, where r ≤ s.

1. Apply Algorithms 4.1 and 4.3 to Pl (1 ≤ l ≤ s) to generate the IGU. Let Bl be the
number of BRAMs to realize the IGU.

2. r ← 1, and i← 1.
3. Gr ← Pi, and B ← Bi.
4. i← i + 1. If i > s, then go to Step.7.
5. Perform a prefix expansion to Gr ∪ Pi, then apply Algorithms 4.1 and 4.3 to them

to generate the IGU. Let Btemp be the number of BRAMs to realize the IGU.
6.1. If B + Bi ≥ Btemp, then Gr ← Gr ∪ Pi, B ← Btemp, and go to Step.4.
6.2. r ← r + 1, and go to Step.3.

7. Terminate.

10

Table 10. Comparison with existing FPGA implementations.

Architecture #prefixes #Slices # of 36Kb Off-chip Normalized area Throughput
BRAMs SRAM [Mb] #Slices #BRAMs [MLPS]

Baboescu et al. 80 K 1,405 530 — 17.5 6.6 125
(ISCA2005) [1]
Fadishei et al. 80 K 14,274 254 — 178.4 3.1 263
(ANCS2005) [3]
Le et al. 249 K 16,617 473 — 66.7 1.8 340
(FCCM2009) [5]
2-3-tree-IPv6 330 K 15,358 580 32.5 46.5 4.5 373
(IEEE Trans.2012) [4]
BST-IPv6 330 K 14,096 1,025 3.2 42.7 3.3 390
(IEEE Trans.2012) [4]
Parallel IGU 340 K 5,577 575 — 16.4 1.7 1,002

5 Experimental Results

5.1 Implementation of the Parallel IGU

We designed the parallel IGU using Xilinx PlanAhead 14.2, and implemented on the
Roach2 board (FPGA: Xilinx Virtex 6 (XC6VSX475T), 74,400 Slices, 1,064 BRAMs (36Kb)).
Pseudo IPv6 prefixes were generated from the present raw 340 K IPv4 prefixes (Nov. 3,
2012) using a method [15]. Since the present IPv6 uses prefixes with length 15 or more,
we generated such prefixes only.

Table 8 shows the number of BRAMs in IGUs to load 340 K pseudo IPv6 prefixes
generated by Algorithm 4.4. Table 9 compares non-uniform grouping with uniform one.
In Table 9, #Slices includes the number of slices for both IGUs and the priority encoder.
Table 9 shows that, the number of BRAMs for the non-uniform grouping is smaller
than that for the uniform grouping. Although the non-uniform grouping requires more
slices than the uniform one, it consumes less than 10% of the available resources in the
FPGA.

Since we implemented small memory part (marked with “*” in Table 8) by dis-
tributed RAMs instead of BRAMs, they consumed 3,288 slices. Thus, the parallel IGU
used 5,577 slices and 575 BRAMs. Since we implemented a complete pipeline archi-
tecture, the maximum clock frequency was 501.4 MHz. By using a dual port BRAM,
the lookup speed for the parallel IGU was 1,002 MLPS (mega lookups per second).

5.2 Comparison with Existing Implementations

Table 10 compares the parallel IGU with existing implementations. Since existing im-
plementations store different numbers of prefixes to compare the efficiency, we used

11

the normalized area, which shows the number of primitives (# of slices or BRAMs)
per a prefix. As for the off-chip SRAMs, we converted them to the equivalent of 36Kb
BRAM numbers. Table 10 shows that, as for the lookup speed, the parallel IGU is 2.56-
8.01 times faster than existing implementations. As shown in Fig. 7, the parallel IGU
has a simple architecture which is suitable for pipelined implementation to increase the
throughput. Also, as for the normalized area, the parallel IGU has the smallest imple-
mentation. Therefore, the parallel IGU outperforms existing FPGA realizations.

6 Conclusion
This paper showed the parallel IGU for IPv6 Lookup. To reduce the memory size of
the IGU, we used linear transformation and row-shift decompositions. Also, this paper
showed a design method for the parallel IGU. We implemented the parallel IGU on the
Xilinx Virtex 6 FPGA, it loaded more than 340 K IPv6 prefixes, and its lookup speed is
1,002 MLPS. Experimental results showed that our implementation outperforms exist-
ing FPGA realizations.

7 Acknowledgments
This research is supported in part by Strategic Information and Communications R&D
Promotion Program (SCOPE), and the Grants in Aid for Scientistic Research of JSPS.

References
1. F. Baboescu, D. M. Tullsen, G. Rosu, and S. Singh, “A tree based router search engine

architecture with single port memories,” ISCA2005, 2005, pp.123.
2. H. J. Chao and B. Liu, High performance switches and routers, JohnWiley& Sons,

Inc.,Hoboken, NJ, USA, 2007.
3. H. Fadishei, M.S. Zamani, and M.Sabaei, “A novel reconfigurable hardware architecture for

IP address lookup,” ANCS2005, 2005, pp.81-90.
4. H. Le and V. K. Prasanna, “Scalable tree-based architectures for IPv4/v6 lookup using prefix

partitioning,” IEEE Trans. on Compt, Vol. 61, No. 7, 2012, pp.1026-1039.
5. H. Le and V. K. Prasanna, “Scalable high throughput and power efficient IP-lookup on

FPGA,” FCCM2009, April, 2009.
6. University of Oregon route views project, http://http://www.routeviews.org/
7. T. Sasao, “Row-shift decompositions for index generation functions,” DATE2012, 2012,

pp.1585-1590.
8. T. Sasao, “Linear decomposition of index generation functions,” ASPDAC2012, 2012,

pp.781-788.
9. T. Sasao, Memory-based logic synthesis, Springer., 2011.

10. T. Sasao, M. Matsuura and H. Nakahara, “A realization of index generation functions using
modules of uniform sizes,” IWLS’10, June 18-20, 2010, pp.201-208.

11. T. Sasao, “On the number of variables to represent sparse logic functions,” ICCAD-2008,
San Jose, California, USA, Nov.10-13, 2008, pp. 45-51.

12. T. Sasao and J. T. Butler, “Implementation of multiple-valued CAM functions by LUT cas-
cades,” ISMVL-2006, Singapore, May 17-20, 2006.

13. R. E. Tarjan and A. C-C. Yao, “Storing a sparse table,” Communications of the ACM, Vol. 22,
No. 11, 1979, pp.606-611.

14. R. Tucker, “Optical packet-switched WDM networks: a cost and energy perspective,”
OFC/NFOEC2008, 2008.

15. M. Wang, S. Deering, T. Hain, and L.Dunn, “Non-random generator for IPv6 tables,”
HOTI2004, 2004, pp.35-40.

12

