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Abstract. This paper shows a virus scanning engine using two-stage matching.
In the first stage, a binary CAM emulator quickly detects a part of the virus pat-
tern, while in the second stage, the MPU detects the full length of the virus pat-
tern. The binary CAM emulator is realized by four index generation units (IGUs).
The proposed system uses four off chip SRAMs and a small FPGA. Thus, the cost
and the power consumption are lower than the TCAM-based system. The system
loaded 1,290,617 ClamAV virus patterns. As for the area and throughput, this
system outperforms existing FPGA-based implementations.

1 Introduction

1.1 Virus Scanning System

A computer virus3 intends to damage computer systems. The growth of the Internet
requires a high-speed virus scanning on an e-mail and a file servers. The throughput of
the software-based virus scanning is at most tens of mega bits per second (Mbps) [16],
which is too low. Thus, a hardware-based virus scanning is necessary. We consider a
low-cost and high-performance virus scanning system shown in Fig. 1 for low-end users
such as SOHO (small office and home office) and enterprise with the following features:

High throughput:The throughput is higher than that of servers (hundreds Mbps). It
has a throughput with higher than one Gbps.

Low power and low cost:It uses a low-end (i.e., a small) FPGA and SRAMs4,
instead of a high-end FPGA and a TCAM. Table 1 shows that the TCAM dissipates
much higher power than the SRAM. Although we can implement the CAM function on
the FPGA [5, 8], for the virus scanning, it requires excessive amount of resources for
the FPGA.

Reconfigurable:It uses a memory-based realization rather than the random logic
realization. Although the random logic realization on the FPGA is fast and compact,
the time for place-and-route is longer than the periods for the virus pattern update.
Some virus scanning software, e.g., Kaspersky [10], updates the virus data every hour.

3 It is also calleda malware (a composite word from malicious software). In this paper, a virus
means a computer virus.

4 As of Nov. 2011, the retail prices for semiconductor devices are as follows: a TCAM is hun-
dreds USD (U.S. dollar); a high-end FPGA is more than ten thousand USD; a low-end FPGA
is several USD; and an SRAM is tens USD [4].
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Fig. 1. Virus scanning system for an e-mail server
and a file server.

Table 1.Comparison of TCAM
with SRAM (18Mbit chip) [9]

TCAM SRAM
Max. Freq. [MHz] 266 400
Power Dissipation [W] 12-15 ≈ 0.1
# of transistors per a bit 16 6

1.2 Related Works

Our virus scanning engine uses two-stage matching to make the circuit compact [11].
Various two-stage matching implementations have been reported: A TCAM with a gen-
eral purpose processor (MPU) [23]; a bit-partitioned Aho-Corasic DFA [20] with a spe-
cial purpose MPU [1]; hash methods using cuckoo hashing [21]; parallel FIMMs with
an MPU [13]; the parallel sieve method with an MPU [14]; and Bloom filter (PERG-
Rx) [7].

1.3 Contributions of The Paper

Implementation of more than one million ClamAV virus patterns:We used a parallel
sieve method.

High-level characterization of the bandwidth by the hardware and the software:We
implement two-stage matching by the hardware and the software. We maximized the
bandwidth by finding the optimal size of the hardware experimentally.

Comparison of various two-stage matching methods:We compare our method with
various two-stage matching implementations with respect to throughput and area effi-
ciency.

The rest of the paper is organized as follows: Chapter 2 introduces the virus scan-
ning based on two-stage matching; Chapter 3 describes the binary CAM emulator for
the FIMM; Chapter 4 shows the implementation results of the virus scanning engine;
and Chapter 5 concludes the paper.

Table 2.Meta characters used in ClamAV

Meta Char Meaning Example
?? An arbitrary character
* Repetition of more AA*BB= {AABB,AA??BB,

than zero “??” AA????BB,AA??????BB,· · ·}
(AA |BB) Set of characters (AA |BB)={AA,BB}
{n-m} Repetition ofn or more thann AA{1-2}BB={AA??BB,

“??” andm or less thanm “??” AA????BB}

2 A Virus Scanning Based on Two-Stage Matching

2.1 Definitions

A virus scanningdetects the virus on atext (executable codes or e-mails). Apattern
is written by aregular expressionconsisting ofcharacters andmeta characters. A



Table 3.Virus patterns in ClamAV (version 0.96.5, December, 1st, 2010) and our implementation.

Pattern type #Patterns Implementation Realized
MD5 checksum 761,527 Hardware Yes
Basic pattern 94,227 Hardware Yes
Google safe browsing database 434,863 Hardware Yes
Combination pattern 85 Software No
Compression file analysis 106 Software No
Total 1,290,808

pattern matching is to detect variable-length patterns in the text. A character is rep-
resented by a pair of hexadecimal numbers. Table 2 shows the meta characters used in
ClamAV. A length is the number of characters. Asubpattern is a part of the pattern
consisting characters only5. In this paper,k denotes the number of patterns,r denotes
the length of a pattern, andm (m ≤ r) denotes the length of a subpattern.

2.2 ClamAV Virus Pattern

As of December 1st, 2010, ClamAV (version 0.96.5) contains 1,290,808 patterns [3].
Table 3 shows the pattern types, the number of patterns, and their detection methods.
An MD5 checksum patternis the MD5 hash value (128 bits) of the virus. It is detected
by the hardware. Abasic pattern is a regular expressionof a part of the virus. It is
detected by the hardware. AGoogle safe browsing database patternis the MD5 hash
value of the abnormal address obtained from the Google safe browsing API [6]. It is
detected by the hardware. Acombination pattern is a combination of basic patterns. It
is detected by the logical operations of software such as “AND”, “OR”, and “NOT” of
the basic patterns. Acompressed file analysis patternincludes a file size, a file name,
or header characteristics. Since the ClamAV committee announces that this pattern will
be not supported, we do not implement this.

Fig. 2 shows the virus scanning system. Since the computing time for the Google
safe browsing API and the basic pattern combination are significantly short, they are
realized by software. The MD5 checksum generator is implemented by the commer-
cial IP core [2]. Therefore, in this paper,k = 1, 290, 617 patterns including the MD5
checksum pattern, the basic pattern, and the Google safe browsing database patternare
realized by avirus scanning engineon the hardware (a small FPGA and SRAMs).

Example 2.1 Table 4 shows an example of ClamAV patterns. For “W32.Gop”,
“736D74702E79656168” and “2D20474554204F49” are subpatterns.

2.3 Virus Scanning Engine Using Two-Stage Matching

A ClamAV pattern consists of subpatterns and meta characters representing the dis-
tance. To detect patterns, we usetwo-stage matching. Fig. 3 shows the virus scanning
engine using two-stage matching. Since no subpattern contains meta characters, in the

5 However, a meta character “??” is permitted.
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Table 4.Examples of ClamAV patterns

Virus Name Pattern
Trojan.DelY-3 64656C74726565{-1}2F(59|79)20633A5C2A2E2A
Trojan.MkDir.B 406D64202572616E646F6D25????676F746F2048
W32.Gop 736D74702E79656168*2D20474554204F49
Worm.Bagle-676840484048688D5B0090EB01EbEB0A5BA9ED46

first stage, we usea binary CAM emulator to detect the subpattern. When a subpattern
is detected,the IRQ (interrupt request) signal andthe appearance locationare sent
to the MPU. Since the pattern contains meta characters, in the second stage, the em-
bedded MPU performs PCRE (Perl compatible regular expression) [15] matching for
the full length of the pattern. Since other subpatterns may be detected during the MPU
operation, FIFOs are attached between the first stage and the second stage to store IRQ
signals and appearance locations. Also,a text buffer memory is attached.

Example 2.2 Fig. 4 shows an example of two-stage matching. First, at the appearance
location “3”, the first stage finds the subpattern “653D” (Fig. 4(1)). At this point, the
second stage finds mismatch (Fig. 4(2)). Next, at the appearance location “6”, the first
stage finds the subpattern “653D” (Fig. 4(3)). Finally, the second stage detects the
pattern (Fig. 4(4)).

2.4 Subpattern Lengthm

For ClamAV, since most patterns are MD5 checksums or MD5 hash values consisting
16 characters (128 bits)6, m is at most 16. Letk be the number of subpatterns with

65 3D {2-4} 72 65 63 {3} 78 65Pattern
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Fig. 4.Example of two-stage matching.

6 For the basic patterns consisting of more than 16 characters, we extract the first 16 characters.
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lengthm to be stored to the binary CAM emulator, then thesubpattern detection
probability P (m) is k

m28
7. Whenm is large, sinceP (m) is small, the IRQ signal rarely

occurs8. However, the size of the binary CAM emulator becomes large (Fig. 5(1)).
On the other hand, whenm is small, the binary CAM emulator becomes small. Since
P (m) is large, the IRQ signal frequently occurs (Fig. 5(2)). In this case, the binary
CAM emulator is suspended until the MPU finishes the operation, so that the system
throughput decreases. Thus, to minimize the size of the binary CAM emulator, we must
find the minimumm that does not suspend the MPU.
Problem 2.1 Let k be the number of subpatterns with lengthm to be stored to the bi-
nary CAM emulator,TMPU be the processing time for the regular expression matching
by the MPU;P (m) = k

m28 be the subpattern detection probability; andTbCAMe be the
operation time of the binary CAM emulator to shift characters. Obtain the minimumm
that satisfies the condition:

TbCAMe

P (m)
≫ TMPU . (1)

1
P (m) denotes the average distance of appearance locations, andTFIMM

P (m) denotes the
average IRQ period. Here, we assume that subpatterns are uniformly distributed. The
actual value ofm is obtained experimentally in Section 4.1.

3 Binary CAM Emulator Using Four Index Generation Units

3.1 Index Generation Function

Definition 3.1 [18] A mappingF (X) : Bn → {0, 1, . . . , k}, is an index generation
function with weight k, whereF (ai) = i (i = 1, 2, . . . , k) for k different regis-
tered vectors, andF = 0 for other (2n − k) non-registered vectors, andai ∈ Bn

(i = 1, 2, . . . , k). In other words, an index generation function produces unique indices
ranging from 1 tok for k different registered vectors, and produces 0 for other vectors.

Example 3.3 Table 5 shows an example of an index generation function, wheren = 6
andk = 7.

In a virus scanning, a registered vector corresponds to a subpattern of a virus pattern,
while an index corresponds to the unique number for each subpattern.

7 when the distribution of the characters in the subpatterns is uniform.
8 For a subpattern shared by multiple patterns, the second stage using the PCRE library detects

the multiple patterns.



Table 5. An example of an
index generation function.

x1 x2 x3 x4 x5 x6 f

0 0 0 0 1 01
0 1 0 0 1 02
0 0 1 0 1 03
0 0 1 1 1 04
0 0 0 0 0 15
1 1 1 0 1 16
0 1 0 1 1 17

Memory
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Fig. 6.Finite Input Memory Machine (FIMM).

3.2 Finite Input Memory Machine to Detect a Subpattern

Fig. 6 showsa finite input memory machine (FIMM) [12] that acceptsk subpat-
terns with lengthm. In Fig. 6,Regdenotes an 8-bit parallel-in parallel-out shift regis-
ter. Them-stage shift register stores the pastm inputs, and the memory produces the
match number. LetMFIMM be the size of the memory9 of the FIMM, then, we have
MFIMM = 28m⌈log2(k + 1)⌉. Thus, a single-memory implementation is impractical
for a largem.

Table 6.Decomposition chart forf(X1, X2).

0 0 0 0 1 1 1 1x3
0 0 1 1 0 0 1 1x2
0 1 0 1 0 1 0 1x1

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
010 1 0 2 0 3 0 0 0
011 0 0 0 0 4 0 0 0
100 5 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 6
111 0 0 7 0 0 0 0 0

x6, x5, x4

Table 7.Decomposition chart for̂f(Y1, X2).

0 0 0 0 1 1 1 1y3
0 0 1 1 0 0 1 1y2
0 1 0 1 0 1 0 1y1

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
010 2 0 1 0 0 0 3 0
011 0 0 4 0 0 0 0 0
100 0 5 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 6 0 0 0
111 0 0 0 0 0 7 0 0

x6, x5, x4

3.3 Index Generation Unit For FIMM

In this paper, to realize the FIMM compactly, we use multiple index generation units (IGUs) [19].

Let f̂(Y1, X2) be the function whose variablesX1 = (x1, x2, . . . , xp) are re-
placed byY1 = (y1, y2, . . . , yp), whereyi = xi ⊕ xj , xi ∈ {X1}, xj ∈ {X2}, and
p ≥ ⌈log2(k + 1)⌉. Table 6 shows adecomposition chart for the index generation
function shown in Example 3.3. The columns labeled byX1 = (x1, x2, x3) denotes
bound variables, and rows labeled byX2 = (x4, x5, x6) denotesfree variables. The
corresponding chart entry denotes the function value. Table 7 shows the decomposition
chart forf̂(Y1, X2), whereY1 = (x1 ⊕ x6, x2 ⊕ x5, x3 ⊕ x4), and the column labels
denoteY1 = (y1, y2, y3), and the row labels denoteX2 = (x4, x5, x6). When a column
of a decomposition chart has two or more non-zero elements, it has acollision. The
number of collisions is three in Table 6, while the number of collisions is only one in
Table 7.

9 Since the amount of memory of the state variables for the shift register is much smaller than
that for the output functions, when we calculate the memory size, we neglect it.



Table 8.Decomposition chart for̂f1(Y1, X2).

0 0 0 0 1 1 1 1y3
0 0 1 1 0 0 1 1y2
0 1 0 1 0 1 0 1y1

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
010 2 0 1 0 0 0 3 0
011 0 0 0 0 0 0 0 0
100 0 5 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 6 0 0 0
111 0 0 0 0 0 7 0 0

x6, x5, x4

Table 9.Main memory for̂h(Y1).

y3 0 0 0 0 1 1 1 1
y2 0 0 1 1 0 0 1 1
y1 0 1 0 1 0 1 0 1
f̂1 2 5 1 0 6 7 3 0

In Table 7, assume that the element ‘4’ in the column (0,1,0) is realized by other
IGU. By removing ‘4’ from f̂ , we havef̂1 whose decomposition chart is shown in
Table 8, where no collision occurs. Note that, we can represent the non-zero elements
of f̂1 by themain memory ĥ whose input isY1. Table 9 shows the function̂h(Y1) of
the main memory. The main memory realizes a mapping from a set of2p elements to
a set ofk + 1 elements. The output for the main memory does not always representf ,
sincef̂1 ignoresX2. Thus, we must check whether̂f1 is equal tof or not by using an
auxiliary (AUX) memory. To do this, we compare the inputX2 with the output for the
AUX memory by acomparator. The AUX memory stores the values ofX2 when the
output off̂1(Y1, X2) is non-zero. Fig. 7 shows theindex generation unit (IGU). First,
thehash circuit generates the transformed inputsY1 from the primary inputs(X1, X2),
where|X1| = |Y1|. The detailed design method for the hash circuit is described in [18].
Second, the main memory finds the possible index corresponding toY1. Third, the AUX
memory produces the corresponding inputsX ′

2 (n− q bits, whereq = ⌈log2(k + 1)⌉).
Fourth, the comparator checks whetherX ′

2 is equal toX2 or not. Finally, the AND
gates produce the correct valuêf(Y1, X2). We implement the main memory and the
AUX memory (gray part in Fig. 7) by a single memory device with|Y1| (= p bits)
inputs andq + |X ′

2| (= n bits) outputs.

Comparator
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Memory

Main

Memory

Hash Circuit

n 2p

n-q

n-q

q

p

Fig. 7. Index generation unit (IGU)
realizing the memory of the FIMM.
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Example 3.4 Fig. 8 shows an example of operation of an IGU realizingf̂1(Y1, X1)
shown in Table 8.

Example 3.5 When the decomposition chart shown in Table 8 is realized by a single
memory, the memory size is26 × ⌈log2(7 + 1)⌉ = 192 (bits). On the other hand, the



memory size for the IGU shown in Fig. 8 is23 × (3 + 3) = 48 (bits). Hence, the IGU
can reduce the memory size.
Table 10.Estimated value vs. experimental value
for ClamAV 1,290,617 subpatterns stored in the
standard parallel sieve method.

Estimated Experimental
p Stored p Stored

IGU1 21 963,815 (74.678%)21 934,999
IGU2 19 243,186 (18.842%)19 303,310
IGU3 17 61,816 (4.789%)16 30,967
IGU4 15 15,921 (1.233%)15 16,056
IGU5 13 4,195 (0.325%)13 4,255
IGU6 11 1,148 (0.089%)11 638
IGU7 10 416 (0.032%) 9 329
IGU8 11 78 (remain) 6 63

Table 11. Estimated value vs. experimen-
tal value for ClamAV 1,290,617 subpatterns
stored in the 4IGU.

Estimated Experimental
p Stored p Stored

IGU1 21 963,815 (74.678%)21 953,221
IGU2 21 280,778 (21.755%)21 311,943
IGU3 21 45,028 (3.489%)21 25,276
IGU4 17 996 (remain)16 177

3.4 Capability of the Index Generation Unit
The fraction of registered vectors realized by the IGU has been analyzed [17].
Theorem 3.1 [17] Let f be ann-variable index generation function with weightk. Let
the non-zero elements off be uniformly distributed in the decomposition chart off .
Then, the fractionδ of registered vectors realized by the index generation unit (IGU) is
given byδ ≃ 1−e−ξ

ξ , wherep denotes the number of inputs to the main memory,k ≤ 2p,

andξ = k
2p .

Example 3.6 When k
2p = 1, we haveδ = 1 − e−1 ≃ 0.632. In this case, the main

memory realizes 63.2% of the registered vectors. Note that the hash circuit is used to
make the function uniformly distributed.

Experimental results show that, by increasing the number of inputsp for the main
memory, we can store virtually all vectors.
Conjecture 3.1 [17] Consider a set of uniformly distributed index generation functions
with weightk (≥ 7). If p ≥ ⌈log2(k + 1)⌉ − 3, then, more than 95% of the functions
can be represented by an IGU with the main memory havingp inputs.

3.5 Realization of the Index Generation Function Using Parallel Sieve
Method [14]

From Theorem 3.1 and Conjecture 3.1, we can estimate the number of registered vectors
k stored in the main memory withp inputs. The parallel sieve method stores all the
subpatterns in multiple IGUs.
Definition 3.2 The parallel sieve methodis an implementation of an index generation
function using multiple IGUs.IGUi+1 is used to realize a part of the registered vectors
not stored byIGU1, IGU2, . . . , IGUi. The OR gate in the output combines the indices
to form a single output. Inthe standard parallel sieve method, the number of inputs
to the main memory is chosen aspi = ⌈log2(ki + 1)⌉, whereki denotes the number of
registered vectors to be realized byIGUj , (j ≥ i).
Example 3.7 Table 10 compares the numbers of estimated stored vectors with that for
the experimental ones for ClamAVk = 1, 290, 617 subpatterns with length10 n = 40.
10 n = 40 is obtained experimentally in our implementation described in Section 4.1.



We can see that, the necessary number of IGUs is obtained from the given number of
vectorsk by using Theorem 3.1 and Conjecture 3.1. In this case, the total amount of
memory is

∑8
i=1 2

pin = 13.33 MBytes.

3.6 Realization of the Index Generation Function Using Four IGUs [18]
In this section, we show that most index generation functions can be realize with only
four IGUs with the uniformed size. We call thisfour IGUs method (4IGU).
Example 3.8 Table 11 compares the estimated stored vectors with that for the exper-
imental ones for ClamAVk = 1, 290, 617 subpatterns with lengthn = 40. By using
Theorem 3.1 and Conjecture 3.1, we can show that, the 4IGU can store all given vec-
tors. In this case, the total amount of memory is2pn× 4 = 40 MBytes.
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1

10

100

1000

10000

100000

1000000

10000000

100000000

3 4 5 6

Subpattern Length m

T
im

e 
[m

ic
ro

 s
ec

]

Average IRQ period

TMPU (worst)

11988 micro sec

TMPU (average)

1384 micro sec

Fig. 10. Average and maximum opera-
tion times of MPUTMPU and average
IRQ period for different values ofm.

3.7 Discussion
Fig. 9 compares the standard parallel sieve method with the 4IGU method, when the
number of registered vectors is 1,290,617 andn = 40. From theoretical analysis, as for
the total amount of memory, the standard parallel sieve method (13.33 MBytes) requires
less memory than the 4IGU method (40.00 MBytes). However, the 4IGU method is
more suitable than the standard parallel sieve method for a small FPGA implementation;
1. The 4IGU is easy to update the registered vectors: The standard parallel sieve

method requires many IGUs. This is inconvenient for the update of registered vec-
tors.

2. The 4IGU uses off-chip memory only: The standard parallel sieve method requires
many memories with different sizes. When we use the off-chip memory only, we
have a problem since the FPGA has a limited number of pins. Also, if we use
the on-chip memory only, the FPGA has a limited amount of on-chip memory. Al-
though the standard parallel sieve method uses both on-chip and off-chip memories,
it requires much on-chip resource on the FPGA.

So, the standard parallel sieve method is unsuitable for a small FPGA implementa-
tion. In Section 4.2, as for FPGA resources, we will show that the 4IGU method uses
less resource than the standard parallel sieve method experimentally.



4 Experimental Results

4.1 Minimum Subpattern Length m

We obtained the minimumm that satisfies the relation (1). To obtain the subpattern
detection probabilityP (m), first, we implemented a cycle-accurate simulator for the
4IGU in C-language. Then, we scanned 2,963 cygwin executable codes. We assume
that the 4IGU reads the data from the SRAM running at 400 MHz. Thus, we have
TbCAMe =

1
400×106 µ sec. We obtained the average operation time of the MPU (TMPU )

and the maximumTMPU by matching 2,963 cygwin executable codes on the MicroB-
laze [22] running at 100 MHz using the Perl Compatible Regular Expression library
(PCRE) [15]. We used the hardware IRQ handler and the software context switch in the
MicroBlaze. Fig. 10 shows the averageTMPU , the maximumTMPU , and the average
IRQ periodTbCAMe

P (m) for differentm. Since both the averageTMPU and the maximum

TMPU are smaller thanTbCAMe

P (m) , we chosem = 5 (40 bits) for implementation.
Table 12.Comparison with Other Methods.

#Pattern #LC On-chip Th #LC/ On-chip Mem/Off-chip
(#Char) Mem [Bytes][Gbps] #Char #CharMemories

USC RegExp 1,31641,787 768,819.2 1.40 2.4999 45.9957SDRAM
Controller(2006) [1] (16,715)
Cuckoo Hashing 4,748 2,982 142,848.0 2.20 0.0436 2.0925SRAM
(2007) [21] (68,266)
Parallel FIMMs 65,53677,304 1,048,576.0 1.5919.3150 2.0000None
(2009) [13] (524,288)
Standard Parallel Sieve 497,172 5,268 3,500,880.0 1.60 0.0013 0.8801Three
Method (2009) [14] (3,977,376) SRAMs
PERG-Rx 85,62542,809 387,072.0 1.30 0.0049 0.0447SRAM
(2009) [7] (8,645,488)
4IGU method 1,290,61713,857 39,116.8 3.20 0.0003 0.0009Four
(Proposed Method) (42,461,299) SRAMs

4.2 Implementation Results

We implemented a proposed virus scanning engine shown in Fig. 3 consisting of the
4IGU and the MicroBlaze (MPU) on the Inrevium Corp. PCI Express Evaluation Board
(FPGA: Xilinx Inc., Virtex5 VLX50T-GB-R). We used four 16MBytes SRAMs run-
ning at 400 MHz for the 4IGU, and used one 512 MBytes SO-DIMM module running
at 266 MHz for the MicroBlaze. The synthesis tool is the Xilinx ISE Design Suite
ver. 11.1. In the implementation, the 4IGU used 6,279 logic cells (LCs); the MicroB-
laze used 1,263 LCs; the DDR2-SDRAM controller used 6,324 LCs and 10 BRAMs;
and the text buffer memory used 10 BRAMs. In total, the virus scanning engine used
13,857 LCs and 20 BRAMs. The 4IGU operated at 508.2 MHz, while the MicroBlaze
operated at 100 MHz. Since we used four SRAMs running at 400 MHz, the 4IGU shifts
8 bits per one clock. Thus, the system throughput is0.4× 8 = 3.2 Gbps.



Table 12 compares various FPGA realizations. As for the throughput (Th), our sys-
tem is 1.45-2.46 times higher. As for the LC requirement per a character (#LC/#Char),
our system is 4.3 times lower than that for the standard parallel sieve method; and as
for the on-chip memory requirement per a character (Mem/#Char), our system is 49.6
times lower than that for the PERG-Rx. This shows that our virus scanning engine is
suitable for a small FPGA implementation. Although it requires four SRAMs, the cost
for off-chip SRAMs is much lower than that for the high-end FPGA. Table 12 shows
that our virus scanning engine is low-cost and high-performance.

5 Conclusion and Comments

This paper showed the virus scanning engine using two-stage matching. In the first
stage, the 4IGU detects the subpatterns, while in the second stage, the MicroBlaze MPU
detects the full length of patterns using PCRE library. Our system using Xilinx FPGA
and four SRAMs stored 1,290,617 ClamAV virus patterns, and has the throughput of
3.2 Gbps. Experimental results showed that our virus scanning engine is suitable for a
low-cost and high-performance system.

Our virus scanning engine has a vulnerability for the performance attack. When
the attacker sends a sequence of stored subpatterns, the first stage generates an IRQ
for every clock, and overflows the second stage. Kumar et al. [11] have proposed a
method to protect against the performance attack. It attaches a flow counter to the FIFO
in Fig. 3. When the value of the counter exceeds the threshold, the circuit detects the
performance attack. Our virus scanning engine can incorporate the Kumar’s method.

In our experiment, to find the optimum subpattern lengthm, we scanned cygwin
executable codes. However, it is possible to use other binary codes. One candidate is
Windows executable codes, since many commercial virus scanner scans them. Also,
we implemented the interface with the hardware IRQ and the software context switch.
Since the hardware context switch can switch the context quickly, it may reduce system
throughput, however, this also increases the amount of hardware. Considering practical
simulation setup is the one of future work.
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