
A Regular Expression Matching Circuit Based on a
Decomposed Automaton

Hiroki Nakahara, Tsutomu Sasao, and Munehiro Matsuura

Kyushu Institute of Technology, Japan

Abstract. In this paper, we propose a regular expression matching circuit based
on a decomposed automaton. To implement a regular expression matching cir-
cuit, first, we convert regular expressions into a non-deterministic finite automa-
ton (NFA). Then, to reduce the number of states, we convert the NFA into a mod-
ular non-deterministic finite automaton with unbounded string transition (MN-
FAU). Next, to realize it by a feasible amount of hardware, we decompose the
MNFAU into the deterministic finite automaton (DFA) and the NFA. The DFA
part is implemented by an off-chip memory and a simple sequencer, while the
NFA part is implemented by a cascade of logic cells. Also, in this paper, we show
that the MNFAU based implementation has lower area complexity than the DFA
and the NFA based ones.

1 Introduction

1.1 Regular Expression Matching for Network Applications

A regular expression represents a set of strings. A regular expression matching de-
tects a pattern written by regular expressions from the input string. Various network
applications (e.g., intrusion detection systems [15][8], a spam filter [16], a virus scan-
ning [6], and an L7 filter [10]) use the regular expression matching. The regular ex-
pression matching spends a major part of the total computation time. Since the modern
network transmission speed exceeds one Giga bit per second (Gbps), the hardware reg-
ular expression matching is essential. For the network applications, since the high-mix
low-volume production and the flexible support for new protocols are required, recon-
figurable devices (e.g., FPGAs) are used. Recently, dedicated high-speed transceivers
for the high-speed network are embedded to FPGAs. So, a trend for using FPGAs will
accelerate in the future. Although the operation speed for the regular expression match-
ing on the FPGA exceeds one Gbps [5][3][4], these methods require high-end and high-
cost FPGAs. In this paper, we realize a low-cost regular expression matching using a
low-end FPGA and off-chip memory.

1.2 Related Work

Regular expressions can be detected by finite automata. In a deterministic finite au-
tomaton (DFA), for each state for an input, a unique transition exists, while in a non-
deterministic finite automaton (NFA), for each state for an input, multiple transitions
exist. In an NFA, there exists ε-transitions to other states without consuming input

characters. Various DFA-based regular expression matchings exist: an Aho-Corasick
algorithm [1]; a bit-partition of the Aho-Corasick DFA by Tan et al. [18]; a combi-
nation of the bit-partitioned DFA and the MPU [3]; and a pipelined DFA [5]. Also,
various NFA-based regular expression matching exist: an algorithm that emulates the
NFA (Baeza-Yates’s NFA) by shift and AND operations on a computer [2]; an FPGA
realization of Baeza-Yates’s NFA (Sidhu-Prasanna method) [14]; prefix sharing of reg-
ular expressions [11]; and a method that maps repeated parts of regular expressions to
the Xilinx FPGA primitive (SRL16) [4].

1.3 Features of the Proposed Method

Lower Complexity than Existing Methods. In this paper, we compare the NFA, the
DFA, and the decomposed NFA with string transition on parallel hardware model. The
decomposed NFA is much smaller than conventional methods.

Efficient Utilization of Embedded Memory The conventional NFA based method
uses single-character transition [14]. In the circuit, each state for the NFA is imple-
mented by a flip-flop and an AND gate. Also, an ε-transition is realized by OR gates
and routing on the FPGA. Although the modern FPGA consists of LUTs and embed-
ded memories, the conventional NFA based method fails to use embedded memories.
In contrast, our method can use both LUTs and embedded memory to implement the
decomposed NFA with string (multi-character) transition.

The rest of the paper is organized as follows: Section 2 shows a regular expression
matching circuit based on the finite automaton (FA); Section 3 shows a regular ex-
pression matching circuit based on an NFA with string transition; Section 4 compares
complexities on the parallel hardware model; Section 5 shows the experimental results;
and Section 6 concludes the paper.

2 Regular Expression Matching Circuit Based on Automaton

A regular expression consists of characters and meta characters. A character is rep-
resented by 8 bits. The length of the regular expression is the number of characters.
Table 1 shows meta characters considered in this paper.

2.1 Regular Expression Matching Circuit Based on Deterministic Finite
Automaton

Definition 2.1 A deterministic finite automaton (DFA) consists of a five-tuple MDFA =
(S, Σ, δ, s0, A), where S = {s0, s1, . . . , sq−1} is a finite set of states; Σ is a finite
set of input character; δ is a transition function (δ : S × Σ → S); s0 ∈ S is the
initial state; and A ⊆ S is a set of accept states. In the practical network application,
|Σ| = 28 = 256.

Table 1. Meta Characters Used in This Paper.

Meta Character Meaning
. An arbitrary character
* Repetition of more than zero or zero (Kleene closure)
+ Repetition of more than one or equal to one
? Repetition of equal and less than one
ˆ Pattern to be matched at only start of the input
$ Pattern to be matched at only end of the input
() Specify the priority of the operation
[] Set of characters

[ˆ] Complement set of characters
{n,m} Repetition (more than n and less than m)
{n,} Repetition (more than n)
{n} Repetition (n times)
| Logical OR

Definition 2.2 Let s ∈ S, and c ∈ Σ. If δ(s, c) �= {φ}, then c denotes a transition
character for the state s.

To define a transition string accepted by the DFA, we extend the transition function
δ to δ̂.

Definition 2.3 Let Σ+ be a set of strings, and let the extended transition function be
δ̂ : S ×Σ+ → S. If C ⊆ Σ+ and s ∈ S, then δ̂(s, C) represents a transition state of s
with respect to the input string C.

Definition 2.4 Suppose that MDFA = (S, Σ, δ, s0, A). Let Cin ⊆ Σ+, and a ∈ A.
Then, MDFA accepts a string Cin, if the relation holds

δ̂(s0, Cin) = a. (1)

Let ci be a character of a string C = c0c1 · · · cn, and δ be a transition function.
Then, the extended transition function δ̂ is defined recursively as follows:

δ̂(s, C) = δ̂(δ(s, c0), c1c2 · · · cn). (2)
From Exprs. (1) and (2), the DFA performs the string matching by repeating state

transitions.

Example 2.1 Fig. 1 shows the DFA for the regular expression “A+[AB]{3}D”.

Example 2.2 Consider the string matching for an input “AABAD” using the DFA
shown in Fig. 1. Let s0 be the initial state. First, δ(s0, A) = s1. Second, δ(s1, A) = s2.
Third, δ(s2, B) = s5. Fourth, δ(s5, A) = s9. Finally, δ(s9, D) = s11. Since the state
s11 is an accept state, the string “AABAD” is accepted.

Fig. 2 shows the DFA machine, where the register stores the present state, and the
memory realizes the transition function δ. Let q be the number of states, and |Σ| = n
be the number of characters in Σ. Then, the amount of memory to implement the DFA
is 2�log2n�+�log2q� × �log2q� bits 1.

1 Since the size of the register in the DFA machine is much smaller than that for the memory
storing the transition function, we ignore the size of the register.

0 1 10 11

2 5 9

84

7

A
A

A

A

A

B

B

B
B

[AB]

[AB] [AB]

[AB]

[AB]

D

D

D

D3 6

Fig. 1. DFA for the regular expression
“A+[AB]{3}D”.

Memory

Register

Input
character

⎡ ⎤n2log

⎡ ⎤q2log

Fig. 2. DFA machine.

2.2 Regular Expression Matching Circuit Based on Non-deterministic Finite
Automaton

Definition 2.5 A non-deterministic finite automaton (NFA) consists of a five-tuple MNFA =
(S, Σ, γ, s0, A), where S, Σ, s0, and A are the same as ones in Definition 2.1, while
the transition function γ : S × (Σ ∪ {ε}) → P (S) is different. Note that, ε denotes an
empty character, and P (S) denotes a power set of S.

In the NFA, the empty (ε) input is permitted. Thus, a state for the NFA can transit to
multiple states. The state transition with ε input denotes an ε transition. In this paper,
in a state transition diagram, an ε symbol with an arrow denotes the ε transition. Fig. 3
shows conversions of regular expressions into NFAs, where a gray state denotes an
accept state.

Example 2.3 Fig. 4 shows the NFA for the regular expression for “A+[AB]{3}D”, and
state transitions for the input string “AABAD”. In Fig. 4, each element of the vector
corresponds to a state of the NFA, and ‘1’ denotes an active state.

string: abc

a b c

a*

a

a+

a

a?

a

a|b

a b

Fig. 3. Conversion of regular expression into NFA.

Sidhu and Prasanna [14] realized an NFA with single-character transitions for reg-
ular expressions [2]. Fig. 5 shows the circuit for the NFA. To realize the NFA, first, the

0 1 2 3 4 5
A D[AB] [AB] [AB]

1 0 0 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

1 1 1 1 0 0

1 1 1 1 1 0

1 0 0 0 0 1

Initial

Input ‘A’

Input ‘A’

Input ‘B’

Input ‘A’

Input ‘D’
accept ‘AABAD’

Fig. 4. NFA for the regular expression “A+[AB]{3}D”.

1

Input character
8

00000otherwise
00001C
01110B
11110A
OutputInput

00000otherwise
00001C
01110B
11110A
OutputInput

‘A’ ‘[AB]’ ‘[AB]’ ‘[AB]’ ‘C’

Transition character detection circuit
(Realized by memory)

FF FF FF FF FF

3-input LUT 2-input LUTs

Fig. 5. A circuit for the NFA shown in Fig. 4.

memory detects the character for the state transition, and then the character detection
signal is sent to small machines that correspond to states of the NFA. Each small ma-
chine is realized by a flip-flop and an AND gate. Also, an ε-transition is realized by
OR gates and routing on the FPGA. Then, machines for the accepted states generate the
match signal.

3 Regular Expression Matching Circuit Based on NFA with String
Transition

3.1 MNFAU

Sidhu-Prasanna’s method does not use the embedded memory2. So, their method is in-
efficient with respect to the resource utilization of FPGA, since modern FPGA consists

2 Their method uses single character detectors (comparators) instead of the memory shown in
Fig. 5

of LUTs and embedded memories. In the circuit for the NFA, each state is implemented
by an LUT of an FPGA. Thus, the necessary number of LUTs is equal to the number
of states. To reduce the number of states, we propose a regular expression matching cir-
cuit based on a modular non-deterministic finite automaton with unbounded string
transition (MNFAU). To convert an NFA into an MNFAU, we merge a sequence of
states. However, to retain the equivalence between the NFA and the MNFAU, we only
merge the states using the following:

Lemma 3.1 Let S = {s0, s1, . . . , sq−1} be a set of states, and Si ⊆ S. Consider a
partition S = S1 ∪ S2 ∪ · · · ∪ Su, where Si ∩ Sj = φ(i �= j). Let er be the number of
ε transition inputs and outputs in the state sr. Then, Si = {sk, sk+1, . . . , sk+p} can be
merged into one state of the MNFAU, if er = 0 for r = k, k + 1, . . . , k + p − 1.

Definition 3.6 Suppose that a set of states {sk, sk+1, . . . , sk+p} be merged into a state
SM of MNFAU. A string C = ckck+1 · · · ck+p is a transition string of SM , when
cj ∈ Σ is a transition character of sj for j = k, k + 1, . . . , k + p.

Example 3.4 In the NFA shown in Fig. 4, the set of states {s2, s3, s4, s5} can be merged
into a state of the MNFAU, and its transition string is “[AB][AB][AB]D”. However, the
set of states {s1, s2} cannot be merged, since e1 �= 0.

Example 3.5 Fig. 6 shows the MNFAU derived from the NFA shown in Fig. 4.

0 1 2A D[AB][AB][AB]

Fig. 6. MNFAU derived from the NFA shown in Fig. 4.

3.2 Realization of MNFAU

To realize the MNFAU, as shown in Fig. 7, we consider a decomposed MNFAU, and
realize it by the following circuits:

1. The transition string detection circuit
2. The state transition circuit.

Since transition strings do not include meta characters 3, they are detected by the exact
matching. The exact matching is a subclass of the regular expression matching and the
DFA can be realized by feasible amount of hardware [20]. On the other hand, since the
state transition part handles the ε transition, it is implemented by the cascade of logic
cells shown in Fig. 5.

3 However, a set of characters “[]” can be used.

Transition string
detection circuit

Input
character

Transition string
detection signals

matchState transition
circuit

Fig. 7. Decomposition of the MNFAU.

0

1

2

3

4

5

6

7

A

A A A

A
A

A
A

B

B B B

B B

B
BD

D
accept

‘[AB]{3}D’

accept ‘A’

Fig. 8. AC-DFA accepting strings “A” and
“[AB][AB][AB]D”.

Transition String Detection Circuit. Since each state of the MNFAU can merge dif-
ferent number of states of the NFA, the lengths of the transition strings for states of
the MNFAU can be also different. To detect multiple strings with different lengths, we
use the Aho-Corasick DFA (AC-DFA) [1]. To obtain the AC-DFA, first, the transition
strings are represented by a text tree (Trie). Next, the failure paths that indicate the tran-
sitions for the mismatches are attached to the text tree. Since the AC-DFA stores failure
paths, no backtracking is required. By scanning the input only once, the AC-DFA can
detect all the strings represented by the regular expressions. The AC-DFA is realized by
the circuit shown in Fig. 2.

Example 3.6 Fig. 8 illustrate the AC-DFA accepting transition strings “A” and
“[AB][AB][AB]D” for the MNFAU shown in Fig. 6.

State Transition Circuit [13]. Fig. 9 shows the state transition circuit for the MNFAU.
When the AC-DFA detects the transition string (“ABD” in Fig. 9), the detection signal is
sent to the state transition circuit. Then, the state transition is performed. The AC-DFA
scans a character in every clock, while the state transition requires p clocks to perform
the state transition, where p denotes the length of the transition string. Thus, a shift
register is inserted between two states in the MNFAU to synchronize with the AC-DFA.
A 4-input LUT of a Xilinx FPGA can also be used as a shift register (SRL16) [19].
Fig. 10 shows two LUT modes of a Xilinx FPGA.

Fig. 11 shows the circuit for the decomposed MNFAU. We decompose the MNFAU
into the transition string detection circuit and the state transition circuit. The transition
function for the AC-DFA is realized by the off-chip memory (i.e., SRAM), while other
parts are realized by the FPGA. In the AC-DFA, a register with �log2q� bits shows the
present state, where q is the number of states for the AC-DFA. On the other hand, u-bit
detection signal is necessary for the state transition circuit, where u is the number of
states for the MNFAU. We use the decoder that converts �log2q�-bit state to u-bit de-
tection signal. Since the decoder is relatively small, it is implemented by the embedded
memory in the FPGA.

Example 3.7 In Fig. 11, the address for the decoder memory corresponds to the as-
signed state number for the AC-DFA shown in Fig. 8. The decoder memory produces
the detection signal for the state transition circuit.

1 2 3
A B D

4

FF FF FF

detect ‘A’ detect ‘B’ detect ‘D’

FF FF FF

detect ‘ABD’ from AC-DFA

1 2
A B D

shift register

State transition with character (NFA)

State transition with string (MNFAU)

Fig. 9. State transition with the string.

D Q D Q D Q D Q
Data in

Clock

D Q D Q D Q D Q

LUT in 0000 0001 0010 1110 1111

SRL16 Mode

4input LUT Mode

Fig. 10. Two LUT modes for Xilinx FPGA.

4 Complexity of Regular Expression Matching Circuit on Parallel
Hardware Model

For the Xilinx FPGA, a logic cell (LC) consists of a 4-input look-up table (LUT) and
a flip-flop (FF) [17]. Also, the FPGA has embedded memories. Therefore, as for the
area complexity, we consider both the LC complexity and the embedded memory
complexity.

4.1 Theoretical Analysis

Aho-Corasick DFA. As shown in Fig. 2, the machine for the DFA has the register stor-
ing the present state, and the memory for the state transition. The DFA machine reads
one character and computes the next state in every clock. Thus, the time complexity
is O(1). Also, since the size of the register is fixed, the LC complexity is O(1). Yu et
al. [20] showed that, for m regular expressions with length s, the memory complexity
is O(|Σ|sm), where |Σ| denotes the number of characters in Σ.

Baeza-Yates NFA. As shown in Fig. 5, the NFA consists of the memory for the transi-
tion character detection, and the cascade of small machine consisting an LUT (realizing
AND and OR gates) and a FF. Thus, for m regular expressions with length s, the LC
complexity is O(ms). Since the amount of memory for the transition character detec-
tion is m×|Σ|×s, the memory complexity is O(ms). The regular expression matching
circuit based on the NFA has s states and performs ε transitions at a time in every clock.
By using m parallel circuits shown in Fig. 5, the circuit can match m regular expres-
sions in parallel. Thus, the time complexity is O(1).

FF FF1 FF FF FF

match ‘A’ match ‘[AB][AB][AB]D’

shift register
(Realized by SRL16)

103
101

017
105

OUTIN

103
101

017
105

OUTIN

Off-chip
Memory (SRAM)

Input Character

Register

Decoder
(On-chip Memory)

DFA

NFA

F P G A

Fig. 11. An example of the circuit for the MNFAU.

Decomposed MNFAU. As shown in Fig. 7, the decomposed MNFAU consists of the
transition string detection circuit and the state transition circuit. The transition string
detection circuit is realized by the DFA machine shown in Fig. 2. Let pmax be the
maximum length of the regular expression, and |Σ| be the number of characters in a
set of Σ. From the analysis of the DFA [7], the memory complexity is O(|Σ|pmax),
while the LC complexity for the AC-DFA machine is O(1). The state transition circuit
is realized by the cascade of LCs shown in Fig. 11. Let pave be the average number of
merged states in the NFA, s be the length of the regular expression, and m be the number
of regular expressions. Since one state in the MNFAU corresponds to pave states in the
NFA, the LC complexity is O(ms

pave
). By using m parallel circuits, the circuit matches

m regular expressions in parallel. Thus, the time complexity is O(1).

Note that, in most cases, the amount of memory for the MNFAU is larger than that
for the NFA. The memory for the NFA requires sm-bit words, while the memory for the
MNFAU requires �log2q�-bit words 4. For the NFA, off-chip memories are hard to use,
since the number of pins on the FPGA is limited. Thus, the NFA requires a large number
of on-chip memories. On the other hand, the MNFAU can use off-chip memory, since
the required number of pins is small. From the point of the implementation, although
the MNFAU requires larger amount of memory than the NFA, the MNFAU can use
off-chip memory and a small FPGA.

Table 2 compares the area and time complexities for the DFA, the NFA, and the
decomposed MNFAU on the parallel hardware model. As shown in Table 2, by using
the decomposed MNFAU, the memory size is reduced to 1

|Σ|ms−pmax of the DFA, while
the number of LCs is reduced to 1

pmax
of the NFA.

4 For example, in the SNORT, the value of sm is about 100,000, while �log2q� = 14

4.2 Analysis Using SNORT

To verify these analyses, we compared the memory size and the number of LCs for
practical regular expressions. We selected 80 regular expressions from the intrusion
detection system SNORT [15], and for each regular expression, we generated the DFA,
the NFA, and the decomposed MNFAU. Then, we obtained the number of LCs and the
memory size. Fig. 12 shows the relation of the length of the regular expression s and the
number of LCs, while Fig. 13 shows the relation of s and the memory size. Note that,
in Fig. 12, the vertical axis is a linear scale, while, in Fig. 13, it is a logarithmic scale.
As shown in Fig. 12, the ratio between the number of LCs and s is the constant. On
the other hand, as shown in Fig. 13, the ratio between the memory size and s increases
exponentially.

Therefore, both the theoretical analysis and the experiment using SNORT show that
the decomposed MNFAU realizes regular expressions efficiently.

Table 2. Complexities for the DFA, the NFA, and the decomposed MNFAU on the parallel hard-
ware mode.

Time Area
Memory #LC

Baeza-Yates’s NFA O(1) O(ms) O(ms)
Aho-Corasick DFA O(1) O(|Σ|ms) O(1)
Decomposed MNFAU O(1) O(|Σ|pmax) O(ms

pave
)

0

50

100

150

200

250

0 50 100 150 200 250
Length of regular expression s

of

 lo
gi

c
ce

lls
 (L

C
s)

NFA
MNFAU
linear approximation

Fig. 12. Relation the length s of regular expression and the number of LCs.

5 FPGA Implementation

We selected the regular expressions from SNORT (open-source intrusion detection sys-
tem), and generated the decomposed MNFAU. Then, we implemented to the Xilinx
Spartan III FPGA (XC3S4000: 62,208 logic cells (LCs), total 1,728 Kbits BRAM). The

s

Fig. 13. Relation the length s of regular expression and the memory size.

Table 3. Comparison with other methods.

Method FA FPGA Th #LC MEM #Char #LC/ MEM/
Type (Gbps) (Kbits) #Char #Char

Pipelined DFA [5] (ISCA’06) DFA Virtex 2 4.0 247,000 3,456 11,126 22.22 3182.2
MPU+Bit-partitioned DFA Virtex 4 1.4 N/A 6,000 16,715 N/A 367.5
DFA [3] (FPL’06)
Improvement of Sidhu-Prasanna NFA Virtex 4 2.9 25,074 0 19,580 1.28 0
method [4] (FPT’06)
MNFA(3) [12] (SASIMI’10) MNFA(p) Virtex 6 3.2 4,717 441 12,095 0.39 37.3
MNFAU (Proposed method) MNFAU Spartan 3 1.6 19,552 1,585 75,633 0.25 21.4

total number of rules is 1,114 (75,633 characters). The number of states for the MNFAU
is 12,673, and the number of states for the AC-DFA for the transition string is 10,066.
This implementation requires 19,552 LCs, and an off-chip memory of 16 Mbits. Note
that, the 16-Mbit off-chip SRAM is used to store the transition function of the AC-DFA,
while 1,585-Kbit on-chip BRAM is used to realize the decoder. The FPGA operates
at 271.2 MHz. However due to the limitation on the clock frequency by the off-chip
SRAM, the system clock was set to 200 MHz. Our regular expression matching circuit
scans one character in every clock. Thus, the throughput is 0.2 × 8 = 1.6 Gbps.

Table 3 compares our method with other methods. In Table 3, Th denotes the through-
put (Gbps); #LC denotes the number of logic cells; MEM denotes the amount of em-
bedded memory for the FPGA (Kbits); and #Char denotes the number of characters for
the regular expression. Table 3 shows that, as for the embedded memory size per a char-
acter, the MNFAU requires 17.17-148.70 times smaller memory than the DFA method.
Also, as for the number of LCs per a character, the MNFAU is 1.56-5.12 times smaller
than the NFA method.

6 Conclusion
In this paper, we proposed a regular expression matching circuit based on a decomposed
MNFAU. To implement the circuit, first, we convert the regular expressions to an NFA.
Then, to reduce the number of states, we convert the NFA into the MNFAU. Next,
to realize it by a feasible amount of the hardware, we decompose the MNFAU into
the transition string detection part and the state transition part. The transition string
detection part is implemented by an off-chip memory and a simple sequencer, while the
state transition part is implemented by a cascade of logic cells. Also, this paper shows
that the MNFAU based implementation has lower area complexity than the DFA and
the NFA based ones. The implementation of SNORT shows that, as for the embedded
memory size per a character, the MNFAU is 17.17-148.70 times smaller than DFA
methods. Also, as for the number of LCs per a character, the MNFAU is 1.56-5.12
times smaller than NFA methods.

7 Acknowledgments
This research is supported in part by the grant of Regional Innovation Cluster Program
(Global Type, 2nd Stage).

References
1. A. V. Aho, and M. J. Corasick, “Efficient string matching: An aid to bibliographic search,”

Comm. of the ACM, Vol. 18, No. 6, pp. 333-340, 1975.
2. R. Baeza-Yates, and G. H. Gonnet, “A new approach to text searching,” Communications of

the ACM, Vol. 35, No. 10, pp. 74-82, Oct., 1992.
3. Z. K. Baker, H. Jung, and V. K. Prasanna, “Regular expression software deceleration for

intrusion detection systems,” FPL’06, pp. 28-30, 2006.
4. J. Bispo, I. Sourdis, J. M. P. Cardoso, and S. Vassiliadis, “Regular expression matching for

reconfigurable packet inspection,” FPT’06, pp.119-126, 2006.
5. B.C.Brodie, D.E.Taylor, and R.K.Cytron, “A scalable architecture for high-throughput

regular-expression pattern matching,” ISCA’06, pp. 191-202, 2006.
6. “Clam Anti Virus: open source anti-virus toolkit,” http://www.clamav.net/lang/en/
7. R. Dixon, O. Egecioglu, and T. Sherwood, “Automata-theoretic analysis of bit-split lan-

guages for packet scanning,” CIAA’08, pp.141-150, 2008.
8. “Firekeeper: Detect and block malicious sites,”

http://firekeeper.mozdev.org/
9. Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill Inc., 1979.

10. “Application Layer Packet Classifier for Linux,” http://l7-filter.sourceforge.net/
11. C. Lin, C. Huang, C. Jiang, and S. Chang, “Optimization of regular expression pattern match-

ing circuits on FPGA,” DATE’06, pp.12-17, 2006.
12. H. Nakahara, T. Sasao, and M. Matsuura, “A regular expression matching circuit based on

a modular non-deterministic finite automaton with multi-character transition,” SASIMI’10,
Taipei, Oct. 18-19, 2010, pp. 359-364.

13. H. Nakahara, T. Sasao, and M. Matsuura, “A regular expression matching using non-
deterministic finite automaton,” MEMOCODE’10, Grenoble, France, July 26-28, 2010,
pp. 73-76.

14. R. Sidhu, and V. K. Prasanna, “Fast regular expression matching using FPGA,” FCCM’01,
pp. 227-238, 2001.

15. “SNORT official web site,” http://www.snort.org.
16. “SPAMASSASSIN: Open-Source Spam Filter,” http://spamassassin.apache.org/
17. “Spartan III data sheet,” http://www.xilinx.com/
18. L. Tan, and T. Sherwood, “A high throughput string matching architecture for intrusion de-

tection and prevention,” ISCA’05, pp.112-122, 2005.
19. “Using Look-up tables as shift registers (SRL16),”

http://www.xilinx.com/support/documentation/application notes/
xapp465.pdf

20. F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and memory-efficient regular
expression matching for deep packet inspection,” ANCS’06, pp. 93-102, 2006.

