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Abstract. The parallel branching program machine (PBM128) consists of 128
branching program machines (BMs) and a programmable interconnection. To
represent logic functions on BMs, we use quaternary decision diagrams. To eval-
uate functions, we use 3-address quaternary branch instructions. We emulated
many benchmark circuits on PBM128, and compared its memory size and com-
putation time with the Intel’s Core2Duo microprocessor. PBM128 requires ap-
proximately quarter of the memory for the Core2Duo, and is 21.4-96.1 times
faster than the Core2Duo.

1 Introduction

A Branching Program Machine (BM) is a special-purpose processor that evaluates
binary decision diagrams (BDDs)[3,2,14]. The BM uses only two kind of instructions:
Branch and output instructions. Thus, the architecture for the BM is much simpler than
that for a general-purpose microprocessor (MPU). Since the BM uses the dedicated
instructions to evaluate BDDs, it is faster than the MPU. In fact, for control applications,
the BM is much faster than the MPU [2]. The applications of BMs include sequencers
[3,14], logic simulators [11,1], and networks (e.g., packet classification).

In this paper, we show the parallel branching machine (PBM128) that consists of 128
BMs and a programmable interconnection. To reduce computation time and memory
size, we use special instructions that evaluate consecutive two nodes at a time.

2 Branching Program Machine to Emulate Sequential Circuits

We show the branching program machine (BM) that emulates the sequential circuit
shown in Fig. 1. First, the combinational circuit is represented by a decision diagram.
Next, it is translated into the codes of the BM. Finally, the BM executes those codes. To
emulate the sequential circuit, the BM uses registers that store state variables. We as-
sume that the BM uses 32-bit instructions, which match the data structure of embedded
systems and the embedded memory of FPGAs.

2.1 MTQDD

In this paper, we use standard terminologies for reduced ordered binary decision dia-
grams (BDDs)[4], and reduced ordered multi-valued decision diagrams (MDDs)[9].
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Fig. 1. Model for a Sequential Circuit
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Fig. 2. Mnemonics and Internal Representations
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Fig. 3. Example of MTBDD
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Fig. 4. MTQDD derived from MTBDD in Fig. 3

An MTBDD (Multi-Terminal Binary Decision Diagram) [8] can evaluate many
outputs at a time. Evaluation of an MTBDD requires n table look-ups. The APL (av-
erage path length) of a BDD denotes the average number of nodes to traverse for the
BDD. Evaluation time for a BDD is proportional to the APL [5]. To further speed up
the evaluation, an MTMDD(k) (Multi-terminal Multi-valued Decision Diagram) is
used. In the MTMDD(k), k variables are grouped to form a 2k-valued super variable.
Note that a BDD is equivalent to an MDD(1). For many benchmark functions, in logic
evaluation, with regard to the area-time complexity, MDD(2)s are more suitable than
BDDs. Since MDD(2) has 4 branches, it is denoted by a QDD (Quaternary Decision
Diagram). In this paper, we use an MTQDD (Multi-terminal Multi-valued QDD).

Example 2.1 Fig. 3 shows an example of MTBDD. Fig. 4 shows the MTQDD that is
derived from the MTBDD in Fig. 3. (End of Example)

2.2 Instructions to Evaluate MTQDDs

Three types of instructions are used to evaluate an MTQDD. A 2-address binary
branch instruction (B BRANCH) and a 3-address quaternary branch instruction
(Q BRANCH) evaluate a non-terminal node, while a dataset instruction (DATASET)
evaluates a terminal node. Mnemonics and their internal representations for
B BRANCH, Q BRANCH and DATASET are shown in Fig. 2.

B BRANCH performs a binary branch: If the value of the variable specified by IN-
DEX is equal to 0, then GOTO ADDR0, else GOTO ADDR1. DATASET performs
an output operation and a jump operation. First, DATASET writes DATA (16 bits) to



A Parallel Branching Program Machine for Emulation of Sequential Circuits 263

a register specified by REG. Then, GOTO ADDR. Q BRANCH jumps to one of four
addresses: Three jump addresses are specified by ADDR0, ADDR1, and ADDR2, while
the remaining address is the next address (PC+1) to the present one. Since it evaluates
two variables at a time, the total evaluation time is reduced up to a half of a B BRANCH
instruction. Also, it can reduce the total number of instructions. We use four different
Q BRANCH instructions shown in Fig. 7. SEL in the Q BRANCH specifies one of four
combinations. Let i be the value of the variable specified by INDEX. If (SEL=i), then
jump to PC+1, otherwise jump to ADDRi. In addition, unconditional jump instruc-
tions are necessary to evaluate some QDDs. Example 2.2 illustrates this.

Example 2.2 The program in Fig. 5 evaluates the MTBDD in Fig. 3. Consider the
MTQDD shown in Fig. 4. Fig. 8 shows the MTQDD with address assignment for
Q BRANCH instructions, where SEL has the same meaning as Fig. 7. For A6,
B BRANCH instruction is used to perform an unconditional jump. The program in
Fig. 6 evaluates the MTQDD. (End of Example)

A0: B BRANCH (A1,A7),x0
A1: B BRANCH (A2,A3),x1
A2: DATASET 01,0,A0
A3: B BRANCH (A4,A5),x2
A4: DATASET 10,0,A0
A5: B BRANCH (A4,A6),x3
A6: DATASET 00,0,A0
A7: B BRANCH (A3,A8),x1
A8: B BRANCH (A6,A5),x2

Fig. 5. Program Code for the MTBDD in
Fig. 3

A0: Q BRANCH (A2,A2,A5),X0,00
A1: DATASET 01,0,A0
A2: Q BRANCH (A3,A3,A4),X1,00
A3: DATASET 10,0,A0
A4: DATASET 00,0,A0
A5: Q BRANCH (A4,A4,A4),X1,10
A6: B BRANCH (A3,A3),--

Fig. 6. Program Code for the MTQDD in Fig. 8
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Fig. 7. Four Different Q BRANCH Instructions
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Fig. 8. MTQDD with 3-address Quater-
nary Branch Instructions

2.3 Branching Program Machine for a Sequential Circuit

Fig. 9 shows a branching program machine (BM) for a sequential circuit. It consists
of the instruction memory that stores up to 256 words of 32 bits; the instruction
decoder; the program counter (PC); and the register file. In our implementation, two
clocks are used to execute each instruction of the BM: A Double-Rank Filp-Flop is
used to implement the state register and the output register [12]. Fig. 10 shows the
Double-Rank Filp-Flop, where L1 and L2 are D-latches.
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In the BM, values of state register are feedbacked into its inputs. Thus, the BM can
emulate a sequential circuit. A BM can load the external inputs, the state variables, and
the outputs from other BMs by specifying the value of the input select register.

3 Parallel Branching Program Machine
3.1 8 BM

Fig. 11 shows the architecture of the 8 BM consisting of 8 BMs. The output registers
and the flag registers of BMs are connected in cascade through programmable routing
boxes. Then, these values are stored into the common registers of the 8 BM. Also, the
values of registers are feedbacked to the input of BM0. Each BM can operate indepen-
dently.

A programmable routing box implements either the bitwise AND, or the bitwise
OR operation. Constant values can be also generated. In the programmable routing
boxes (highlighted with gray in Fig. 11), constant 1s are generated to perform the bit-
wise AND operation, while constant 0s are generated to perform the bitwise OR oper-
ation. Since BMs are connected each other by sharing a register, each BM can send the
signal to other BM in one clock. Since a BM uses two clocks to perform an instruction,
the communication delay within an 8 BM can be neglected.
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3.2 Parallel Branching Program Machine

Fig. 12 shows the Parallel Branching program Machine (PBM128) consisting of 128
BMs described in Section 2. Eight BM constitute an 8 BMs, and sixteen 8 BMs and a
programmable interconnection constitute the PBM128. Primary inputs and configu-
ration signals are sent to the 8 BMs. Each 8 BM has external outputs and state variables.
The external outputs are connected to the system bus, while the state variables are sent
to 8 BMs through the programmable interconnection. When the all 8 BMs finish the
operation, the values of state variables of an 8 BM are sent to other 8 BMs through
the programmable interconnection. These operations can be specified by the values of
the flag register. In addition, MPU is used to control the whole system.

3.3 Programmable Interconnection

A multi-level circuit of multiplexers is used in the programmable interconnection. To
increase the throughput, pipeline registers are inserted into the programmable intercon-
nection. The insertion of pipeline registers increases the latency: Four clocks are used
to connect the outputs of an 8 BM to other 8 BM. Since two clocks are used for an in-
struction of the BM, the PBM128 requires two instructions time to finish the connection
between BMs in different 8 BMs. In the code generation, the wait time inserted.

4 Implementation and Experimental Results

4.1 Implementation of Parallel Branching Program Machine

We implemented the PBM128 on the Altera’s FPGA (StratixII: EP2S130F1508C4).
In our implementation, the maximum frequency is 132.73[MHz]. The PBM128 con-
sumes 67817 ALUTs out of 106032 of available ALUTs. Each BM consumes 455
ALUTs (0.6% of used ALUTs), each 8 BM consumes 3778 ALUTs (5.6% of used
ALUTs), sixteen 8 BMs consume 60764 ALUTs (89.6% of used ALUTs), and the pro-
grammable interconnection consumes 6307 ALUTs (9.3% of used ALUTs). As for the
MPU, the embedded processor NiosII/f is used.

Table 1. Comparison of the Execution Code Size and the Execution Time

Name In Out FF Core2Duo PBM128 Ratio(C2D/PBM)
Code Time Code Time Code Time

s5378 35 49 164 74.6 12030 17.8 323 4.19 37.2
s9234 36 39 211 148.6 13450 33.4 352 4.44 38.2
dsip 229 197 224 112.1 17500 24.8 182 4.52 96.1
bigkey 263 197 224 149.5 19170 33.9 220 4.41 87.1
apex6 135 99 23.0 3700 4.8 163 4.79 22.6
cps 24 102 33.9 3468 8.3 162 4.08 21.4
des 256 245 123.1 16560 30.7 308 4.00 53.7
frg2 143 139 40.0 6390 9.2 215 4.34 29.7
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4.2 Experimental Results

We selected benchmark functions [13], and compared the execution time and code size
for the PBM128 with the Intel’s general-purpose processor Core2Duo U7600 (1.2GHz,
Cache L1 data 32KB, L1 instruction 32KB, and L2 2MB). The execution code was
generated by gcc compiler with optimization option -O3. We partition the outputs into
groups, then represent them by multiple MTQDDs, and finally convert them into the
codes for the PBM128. We used a grouping method [10] that partitions outputs with
similar inputs. As for the data structure, the MTQDD is used for the PBM128, while
the MTBDD is used for the Core2Duo, since the MTBDD is faster than the MTQDD.
We used the same partitions of the outputs in the Core2Duo and in the PBM128. To ob-
tain the execution time per a vector, we generated random test vectors, and obtained the
average time. The frequency for the PBM128 is 100[MHz], while that for the Core2Duo
is 1.2[GHz]. Table 1 compares the code size and the execution time for the Core2Duo
and the PBM128. In Table 1, Name denotes the name of benchmark function; In de-
notes the number of inputs; Out denotes the number of outputs; FF denotes the number
of state variables; Code denotes the size of execution code [KBytes]; Time denotes the
execution time [nsec]; and Ratios denote that for the code size and that of the exe-
cution time (Core2Duo/PBM128). Table 1 shows that the PBM128 requires approxi-
mately quarter of the memory for the Core2Duo, and is 21.4-96.1 times faster than the
Core2Duo.

5 Conclusion

In this paper, we presented the PBM128 that consists of 128 BMs and a programmable
interconnection. To represent logic functions on BMs, we used quaternary decision dia-
grams. To evaluate functions, we used 3-address quaternary branch instructions. We em-
ulated many benchmark functions on the PBM128 and the Intel’s Core2Duo micropro-
cessor. The PBM128 requires approximately quarter of the memory of the Core2Duo,
and is 21.4-96.1 times faster than the Core2Duo.
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