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High-Speed Hardware Partition Generation

JON T. BUTLER, Naval Postgraduate School
TSUTOMU SASAO, Meiji University

We demonstrate circuits that generate set and integer partitions on a set S of n objects at a rate of one
per clock. Partitions are ways to group elements of a set together and have been extensively studied by
researchers in algorithm design and theory. We offer two versions of a hardware set partition generator.
In the first, partitions are produced in lexicographical order in response to successive clock pulses. In the
second, an index input determines the set partition produced. Such circuits are useful in the hardware
implementation of the optimum distribution of tasks to processors. We show circuits for integer partitions as
well. Our circuits are combinational. For large n, they can have a large delay. However, one can easily pipeline
them to produce one partition per clock period. We show (1) analytical and (2) experimental time/complexity
results that quantify the efficiency of our designs. For example, our results show that a hardware set partition
generator running on a 100MHz FPGA produces partitions at a rate that is approximately 10 times the rate
of a software implementation on a processor running at 2.26GHz.
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1. INTRODUCTION

The enumeration of integer and set partitions by software has long been a fertile
area of research [Reingold et al. 1977; Semba 1984]. However, in spite of its promise,
enumeration by hardware has received comparatively little attention. A naive approach
to generating general partitions is slow. For example, a circuit implementation of a
generator of four-element set partitions would require an 8-bit output, where the block
in which each element is located is represented as 00, 01, 10, and 11. One can then
generate all 8-bit binary tuples and test whether each is a set partition. This sieve
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approach is slow because there are many fewer partitions than there are binary n-
tuples. We seek a circuit in which a partition emerges at every clock pulse.

Partitions are important combinatorial objects. Set partitions on n elements enu-
merate the equivalence relations on n elements. For example, the set partition
{{3, 1}, {2}, {0}} places elements 3 and 1 in the same block and elements 2 and 0 in
separate blocks. Each block represents all elements related by the equivalence rela-
tion. The number of partitions can be large, and the use of hardware offers a high-speed
alternative to software.

Our effort to enumerate integer and set partitions is part of a larger project to answer
a fundamental question: Which of the combinatorial objects can be enumerated by a
simple circuit at a rate of one per clock? Combinatorial objects include combinations,
permutations, set partitions, integer partitions, codewords, bent Boolean functions,
and monotone Boolean functions. The term “one per clock” suggests a rate that is
independent of clock frequency and refers to a circuit designed to generate individual
partitions in a single clock period. We have shown a circuit that can sieve for bent
Boolean functions [Shafer et al. 2010], and we have shown that, given a polynomial-
sized circuit that can sieve, there exists a (possibly exponential-sized) circuit that can
generate the same set of objects at a rate of one per clock [Butler and Sasao 2013a].
However, this leaves open the question of whether a simple circuit exists that can
generate bent Boolean functions at a rate of one per clock. It also invites the question
of whether other combinatorial objects can be generated at a rate of one per clock. We
have shown that combinations [Butler and Sasao 2011] and permutations [Butler and
Sasao 2012] can be generated at a rate of one per clock. In this article, we show that
set and integer partitions can be generated at a rate of one per clock.

The ability to generate set partitions has important practical applications. Hankin
and West [2007] show how partitions are used to solve optimization problems in bioin-
formatics, forensic science, and scheduling. For example, set partitions can be used to
specify the ways tasks are allocated to processors, from which one seeks the partition
that corresponds to the shortest computation time. This last application especially re-
quires high-speed enumeration of partitions. In multistate distribution systems (packet,
water, gas, etc.) [Nagayama et al. 2012], the overall quality of service is dependent on
attributes of the components, as measured by variables. There is a need to quickly enu-
merate partitions of the variables used in decision diagrams that model the system.
Since models of such systems are huge, as are the data structures, decision diagrams
are used in the model. In 1997, Bousquet-Mélou and Erikson [1997a, 1997b] developed
the theory of “Lecture Hall Partitions,” which describes all possible ways an n-row
lecture hall can be configured so that every seat has a view of the lecturer. Enumer-
ating such partitions allows one to analyze all possible choices before committing to
construction, including combinations of such partitions.

An integer partition is a way to write an integer n as a sum of parts (positive inte-
gers), where the order of parts is unimportant. For example, 2 + 1 + 1 is an integer
partition on 4. Recent research in computational molecular biology has shown the im-
portance of integer partitions in quantifying the role of genes in determining global
characteristics of species. For example, Woodruff [2006] and Chen et al. [2008] have
identified the importance of solving the minimum common integer partition (MCIP)
problem in DNA fingerprint assembly. This problem requires the enumeration of par-
titions at high speed, since so many partitions must be considered. We know of no
hardware specifically designed for the MCIP problem. However, the enormous amount
of logic available on FPGAs for highly parallel applications has inspired study into
their use as accelerators in computational biology applications [Terasic 2011].

The availability of large programmable logic circuits has allowed computations to
be performed in hardware that previously could only be done in software, but at a
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much higher rate. There are many papers on programs and algorithms for enumerat-
ing partitions [Gosper 1972; Kawano and Nakano 2005; McKay 1965; Reingold et al.
1977; Oommen and Ng 1990; Semba 1984; Zoghbi and Stojmenovič 1998], including
parallel algorithms [Stojmenovič 1990]. While there are many papers on programs
and algorithms for enumerating partitions, we know of only one that uses an FPGA
to enumerate partitions. Lavenier and Saouter [1998] reported the use of FPGAs to
enumerate two-part integer partitions to calculate the number of Goldbach partitions
on even integers. This was intended to provide insight into the Goldbach conjecture:
every even integer n greater than 3 is the sum of two prime integers.

This article presents hardware that enumerates general set and integer partitions. In
Section 2, we discuss the generation of set partitions, showing circuits and experimental
results. In Section 3, we show the design of an integer partition circuit and experimental
results. Finally, in Section 4, we give concluding remarks.

2. SET PARTITIONS

2.1. Introduction

Definition 2.1. Given an n-set S = {0, 1, . . . , n− 1}, {S0, S1, . . . , Sn−1} is a set parti-
tion of S iff (1) Si ⊆ S, (2) Si

⋂
Sj = ∅ for i �= j, and (3)

⋃n−1
i=0 Si = S.

A set partition of a set S is the placement of elements of S into
blocks. For example, there are 15 set partitions of four elements 0, 1, 2,
and 3. These are {{3, 2, 1, 0}} (all elements in the same block), {{3, 2, 1}, {0}},
{{3, 2, 0}, {1}}, {{3, 2}, {1, 0}}, {{3, 2}, {1}, {0}}, {{3, 1, 0}, {2}}, {{3, 1}, {2, 0}}, {{3, 1}, {2},
{0}}, {{3, 0}, {2, 1}}, {{3}, {2, 1, 0}}, {{3}, {2, 1}, {0}}, {{3, 0}, {2}, {1}}, {{3}, {2, 0}, {1}},
{{3}, {2}, {1, 0}}, and {{3}, {2}, {1}, {0}} (all elements in separate blocks). Neither the or-
der of the blocks nor the order of elements within each block matters. For example,
partitions {{3, 1}, {2}, {0}} and {{0}, {1, 3}, {2}} are identical. The number of set partitions
increases rapidly as the number of elements n increases and are counted by the Bell
numbers B(n). For example, for sets of size n = 2, 3, 4, 5, 6, 7, and 8, the number of
set partitions is B(n) = 2, 5, 15, 52, 203, 877, and 4, 140. For large n, B(n) is bounded
above by ( 0.792n

ln(n+1) )
n [Berend and Tassa 2010].

It is convenient to represent a partition in its restricted growth string form, as
follows. Since a set partition is unchanged by a reordering of blocks, call the block in
which n − 1 is located block 0. Then, n − 2 is either in the same block, block 0, or in a
different block. If it is in a different block, call that block 1. Then, n−3 is either in block
0 or 1 or some other block. If it is in some other block, call that block 2. Continue in this
way until all elements are assigned a block. For example, the partition {{3, 1}, {2}, {0}}
has the restricted growth string (0102). That is, 3 is (always) in block 0. This explains
the leftmost 0 of the restricted growth string. Next, 2 is in a different block than 3.
This explains the next 1. Next, 1 is in the same block as 3, and this explains the next
0. Finally, 0 is in its own block, and this explains the rightmost 2. From this, it can be
seen that integer elements in the restricted growth string are indices to blocks in the
partition. Formally:

Definition 2.2. An n-element restricted growth string is a sequence (b0b1 . . . bn−1)
such that b0 ≤ bi ≤ max0≤ j<i(bj + 1), where b0 = 0.

The first element of a restricted growth string is always 0, signifying that element n−
1 is always in block 0. As one progresses down through the elements of a partition, one
encounters either a new block or an old one, represented by the next larger block index
(1 plus the maximum of all elements with smaller index) or a previously encountered
block index, respectively.
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Table I. Partitions on a Set of n = 4 Versus Their Index i

Restricted
i Partition Growth String

0 {{3, 2, 1, 0}} (0 0 0 0)
1 {{3, 2, 1}, {0}} (0 0 0 1)
2 {{3, 2, 0}, {1}} (0 0 1 0)
3 {{3, 2}, {1, 0}} (0 0 1 1)
4 {{3, 2}, {1}, {0}} (0 0 1 2)
5 {{3, 1, 0}, {2}} (0 1 0 0)
6 {{3, 1}, {2, 0}} (0 1 0 1)
7 {{3, 1}, {2}, {0}} (0 1 0 2)
8 {{3, 0}, {2, 1}} (0 1 1 0)
9 {{3}, {2, 1, 0}} (0 1 1 1)
10 {{3}, {2, 1}, {0}} (0 1 1 2)
11 {{3, 0}, {2}, {1}} (0 1 2 0)
12 {{3}, {2, 0}, {1}} (0 1 2 1)
13 {{3}, {2}, {1, 0}} (0 1 2 2)
14 {{3}, {2}, {1}, {0}} (0 1 2 3)

LEMMA 2.1 [ORLOV 2002]. There is a bijection between the set of partitions of an n-set
and the set of n-element restricted growth strings.

The one-to-one relation between partitions and restricted growth strings means that
we can enumerate the latter with a guarantee that we enumerate the former. Convert-
ing from one to the other requires only a combinational logic circuit. Table I shows the
set of all 15 partitions on n = 4 elements {3, 2, 1, 0}. The first column shows the index i,
where 0 ≤ i ≤ 14. i indexes the set partitions according to the increasing lexicograph-
ical order of the restricted growth strings. The second column shows how the actual
partition distributes the elements {3, 2, 1, 0} into blocks. Here, commas separate blocks
and elements within the same block. The third column shows the restricted growth
string. Each restricted growth string begins in 0, indicating that 3 is (always) in the
first (0th) block. The second element shows where element 2 is located (in the 0th or
1st block). The third element shows where element 1 is located (in the 0th, 1st, or 2nd
block). The fourth element shows where element 0 is located (in the 0th, 1st, 2nd, or
3rd block). In general, the jth element can be in the 0th, 1st, . . . ( j − 1)-th block.

In order to deduce the circuit needed to produce a set partition from an index,
we introduce the partition tree. Specifically, the methodology to design a hardware
index to set partition converter uses a tree structure to store all partitions on a set
{n − 1, n − 2, . . . , 1, 0} of n elements.

Definition 2.3. A (set) partition tree for n consists of three node types:

(1) the single root node labeled 0,
(2) internal nodes labeled i, for all i ∈ {0, 1, . . . , n − 2},
(3) terminal nodes labeled i, for all i ∈ {0, 1, . . . , n − 1},
and one edge type:

(1) an edge connects a node labeled i to a node labeled j iff (1) 0 ≤ j ≤ i + 1 and (2)
the path from the root node to j has no more than n nodes.

A terminal node is simply the last node along a path from the root node. From the
definition of an edge, all paths from the root node to a terminal node have n nodes
(and n − 1 edges). In a partition tree, the restricted growth string of a set partition is
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Fig. 1. Example of a partition tree for set partitions on n = 4 elements.

represented by the labels of edges along a path from the root node to a terminal node.
Each node in a path specifies a block in which the corresponding element is located.

Example 2.1. Figure 1 shows the partition tree for partitions with n = 4 elements.
Note that all paths from the root node to a terminal node have four nodes and three
edges. Following the leftmost path from the root node to a terminal node yields the
node labels (0000). This restricted growth string specifies that all elements, 3, 2, 1, and
0, belong to block 0. That is, this is the partition in which all elements are in a single
block. Following the rightmost path yields the node labels (0123). This restricted growth
string specifies the partition in which all elements are in different blocks. Following
the path with node labels (0102) yields a partition with 3 and 1 in the same block and
2 and 0 each in separate blocks with just one element.

The partition tree is similar to a decision tree [Bryant 1986]. Each node has child
nodes corresponding to all possible choices at that point. Like the decision tree, the
partition is recursive. Although the partition tree and the decision tree are similar,
their use in the design process is quite different.

Each terminal node corresponds to a partition. Figure 1 shows, as (additional) termi-
nal labels, the index of the partition. There are 15 partitions in this example, labeled
0, 1, . . . , and 14. Note that edges are labeled by the part that each contributes to the
index. For example, the edge from the root node to the node labeled 1 has weight 5.
This is because the indices on the right side of the tree corresponding to the latter node
all have index 5 or greater. It follows that the index associated with each node can be
obtained by summing the weights in edges associated with the path from the root node
to the corresponding terminal node. This is an important observation, since it provides
the basis for a circuit design of a set partition generator.

2.2. Circuit Implementations

2.2.1. Introduction. In this section, we consider three circuit implementations of the
set partition generator: (1) a sequential circuit implementation, which produces set
partitions in lexicographical order; (2) a single-stage circuit implementation, which
accepts an index and produces the set partition corresponding to that index; and
(3) a multistage circuit implementation, which also accepts an index and produces
the set partition corresponding to that index. We show that the sequential circuit is
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Fig. 2. Sequential set partition generator.

the simplest. However, it can only produce the set partitions in lexicographical order.
The single stage and multistage circuits convert an index to the set partition with that
index. Thus, they are useful in Monte Carlo simulations. Both produce a set partition
at a rate of one per clock. However, the latency of the multistage circuit is larger, n− 2,
versus 1 for the single-stage circuit. But there is a significant penalty in the complexity
of the single stage circuit, whose complexity we show as O(( n

ln(n) )
n) versus O(n2) for the

multistage circuit.

2.2.2. Sequential Circuit Implementation. Figure 2 shows a sequential circuit implemen-
tation of a set partition converter. When Reset is asserted, the Counters of all stages
are set to 0. The Clock comes in at the right. This passes to the MUX of the rightmost
stage through an AND gate because the other AND gate input is 1. Because of values
on the comparator inputs in this stage, the clock pulse is passed to the count input of
this stage’s Counter, causing it to increase by 1 (i.e., the right element of the restricted
growth string is increased by 1). The comparator of this rightmost stage produces a 1
if and only if the max of all elements of the restricted growth string to the left of the
current element are the same or greater than this stage’s element. Otherwise, a 0 is
produced, in which case the current element is strictly greater; the current element has
reached its max value. A 0 result at the comparator output “switches” the MUX so that
the clock is passed to the Reset input of the Counter. As a result, the next clock causes
the current element to return to 0. Stages to the left of the rightmost stage operate
in a similar manner. This circuit is similar to an ordinary up counter, except for the
different ranges across the various digits. Overall, this circuit produces the next set
partition in increasing lexicographical order according to the restricted growth string.
Specifically, it first generates (b0 . . . bn−2bn−1) = (0 . . . 000), then (0 . . . 001), and so forth.
The count finishes when bn−1 is n − 1. At this point, Done is asserted. This could be
used externally, or it could stop the clock, preventing the circuit from receiving further
clock pulses. With respect to delay, this circuit is similar to a ripple carry adder. Here,
the critical path goes from right to left through the series of AND gates that have one
inverted input.

2.2.3. Single-Stage Combinational Circuit Implementation. Figure 3 shows the single-stage
index to set partition circuit for partitions of size n = 4. The index comes in on the left
and is tested by five comparators. These test the range of the index and determine the
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Fig. 3. Single-stage index to set partition circuit for n = 4.

Fig. 4. Multistage index to set partition circuit.

first three elements of the restricted growth string. There are five possibilities, 000,
001, 010, 011, and 012. One of these five is applied to the one-hot MUX that drives
the output. Also, the threshold is subtracted from the incoming index and the result
applied to the output as the least significant digit. The threshold values in Figure 3
are determined by the partition tree shown in Figure 1. They correspond to the indices
assigned to the 0 terminal nodes in Figure 1. The corresponding indices are shown in
Figure 1 as underlined values assigned to terminal nodes. There is only one stage in
this implementation.

2.2.4. Multistage Combinational Circuit Implementation. Figure 4 shows the multistage index
to set partition converter. Here, the index comes in on the left. It then passes left to right
through the stages. Within each stage, it is reduced (possibly by 0) and then passed
onto the next stage, which is the first stage of a smaller partition tree. The reader may
recall our earlier comment regarding the recursive nature of the set partition tree. At
each stage, an element in the restricted growth string of the set partition is computed.
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For example, in the left stage, b1 is determined. From the partition tree in Figure 1,
it can be seen that, if the index is 4 or less, b1 is 0. Conversely, if the index is 5 or
greater, b1 is 1. It follows that the threshold A in Figure 4 is 5. Also, if the index is
5 or more, 5 is subtracted from the index and is passed to the next stage. Recall that
the thresholds against which the index is compared vary according to the maximum
value in the restricted growth string computed so far. The maximum value is computed
in the MAX gate in the lower right-hand corner of each stage. In the leftmost stage,
the output value of MAX is 0 or 1. This is passed to the next stage, which uses it to
determine the two threshold values A and B. The critical path in the multistage index
to set partition circuit extends from the index input on the left through the comparators,
AND gates, MUXes, and subtractors of the various stages to the bn−1 output, which is
the rightmost digit of the restricted growth string. Note that the subtractor and MAX
gate of the rightmost stage are not used but are retained for consistency.

Note that, in a multistage index to set partition converter for n = 4, there are nine
comparators. The single-stage index to set partition converter has five. This raises the
question of which circuit is more compact for general n. This is addressed in the next
section.

2.2.5. Circuit Complexity and Delay. Note that all three circuits use comparators. Fur-
ther, the complexity of the other parts of the circuit is proportional to the number of
comparators. For example, the number of AND gates is nearly the same as the number
of comparators, and the one-hot MUX circuits have about as many inputs as the num-
ber of comparators. Therefore, it will be convenient to measure the circuit’s complexity
by the number of comparators it contains. In making this assumption, we neglect the
increase in circuit complexity and delay in comparators and multiplexors that occur
when n increases.

LEMMA 2.2. The number of comparators Ci used in a set partition generator is

1) sequential (Figure 2): C1 = O(n),
2) single stage (Figure 3): C2 = O(( n

ln(n) )
n), and

3) multistage (Figure 4): C3 = O(n2).

PROOF. In the case of the sequential set partition generator, each stage has one
comparator, and there are n − 1 stages. Thus, C1 = O(n).

In the case of the single-stage set partition generator, the number of comparators is
just the number of set partitions on n− 1, which is C2 = B(n− 1), where B(n− 1) is the
n− 1-th Bell number. From Berend and Tassa [2010], we have B(n− 1) < ( 0.792(n−1)

ln(n) )n−1.
Thus,

C2 = O
((

n
ln(n)

)n)
. (1)

In the case of the multistage set partition generator, the first (leftmost) block has two
comparators. The next block has three, the next four, and so forth. There are a total of
n − 2 blocks. Thus, C3 = ∑n−2

i=2 i = n(n+1)
2 − 2n + 4, and we can write

C3 = O(n2). (2)

It is clear from Lemma 2.2 that the multistage index to set partition converter has
many fewer comparators than the single-stage converter in the case of set partitions
on many elements. Thus, the case for n = 4 discussed at the end of the previous
section is not representative for large n. Recall for that specific case, the multistage
convertor had more comparators (nine) than the single-stage convertor (five). We can
also compare the circuits on the basis of their delay. In our analysis, we consider the
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Table II. Frequency/Resources Used to Realize the Sequential Set Partition Generator on the Altera Stratix IV
EP4SE530F43C3NES FPGA

# Set In Out # # LUTs With Various # of Inputs Estimated
Par- # # Freq. Delay Comb # of Pac-

n titions Bits Bits (MHz) (ns) Fnc 7- 6- 5- 4- 3- ked ALMs

5 52 6 15 236.2 4.234 42 1 1 12 8 20 22(0%)
6 203 8 18 172.6 5.793 60 2 5 19 13 21 34(0%)
7 877 10 21 156.4 6.393 58 3 1 15 9 30 31(0%)
8 4,140 13 24 130.8 7.643 63 3 3 13 11 33 35(0%)

16 1.05 × 1010 34 64 122.1 8.190 245 5 28 87 61 64 135(0%)
32 1.28 × 1026 88 160 53.0 18.863 741 3 231 221 94 192 459(0%)
64 1.72 × 1065 217 384 25.9 38.584 1,923 10 477 659 298 479 1,146(0%)

128 1.12 × 10158 526 896 11.0 91.278 3,847 13 727 1,666 427 1,014 2,134(1%)

delay of a circuit to be the number of stages through which the signal must pass. As
in the case of complexity, we neglect the increase in circuit delay in comparators and
multiplexors that occurs when n increases.

LEMMA 2.3. The delay Di in a set partition generator is

1) sequential (Figure 2): D1 = n − 1,
2) single stage (Figure 3): D2 = 1, and
3) multistage (Figure 4): D3 = n − 2.

PROOF. In the case of the sequential set partition generator, there are n − 1 stages
through which a signal must pass. In the case of the single-stage set partition generator,
there is exactly one stage, and the delay is independent of n. In the case of the multistage
set partition generator, the index must propagate through n − 2 stages.

Note that, in these calculations, we considered the multistage index to set partition
converter to be combinational. When n is large, this circuit has a large delay. In order
to improve the throughput, we will create a pipelined circuit by inserting registers
between stages. In the next section, we compare the experimental delay of a pipelined
version of the multistage circuit with the combinational circuit of the single-stage
circuit. As a result, the time comparisons will be different from the derived delay.

2.2.6. Experimental Data. In the previous analysis, we used the number of comparators
as a measure of complexity and the number of stages as a measure of delay. This
yields insight but is only an approximate measure. In this section, we use actual FPGA
resources. Using the Synopsys design tool Synplify Pro, we simulated the three circuits
discussed previously on the Altera Stratix IV EP4SE530F43C3NES FPGA. Table II
shows the resource usage for the sequential version.

From Table II, for all values of n ≤ 16, the achieved frequency exceeds 100MHz. Thus,
the sequential partition generator produces one partition per clock period for all n ≤ 16,
where the clock period is 10ns. To compare this rate to a software implementation of
a sequential partition generator, we adapted Orlov’s [Orlov 2002] program and ran it
on an Intel CoreTM2 Duo P8400 processor running at 2.26GHz. For 8- and 16-element
partitions, we achieve a rate of partitions of one per 94ns and 156ns, respectively. Thus,
our hardware version realizes a 9.4 and 15.6 times speedup compared to the software
version.

The first column in Table II shows n, the second column shows the number of set
partitions, the third column shows the number of input bits, and the fourth column
shows the number of output bits. All remaining columns show circuit parameters pro-
vided by Synplify Pro. The fifth column shows the frequency specified by Synplify Pro.
The corresponding delay is shown in the sixth column. The seventh column shows the
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Table III. Frequency/Resources Used to Realize the Single-Stage Index to Set Partition Converter on the Altera
Stratix IV EP4SE530F43C3NES FPGA

# Set In Out # # LUTs With Various # of Inputs Estimated
Par- # # Freq. Delay Comb # of Pac-

n titions Bits Bits (MHz) ns. Fnc 7- 6- 5- 4- 3- ked ALMs

4 15 4 8 406.3 2.461 5 0 0 0 5 0 3(0%)
5 52 6 15 406.3 2.461 22 0 3 12 4 3 12(0%)
6 203 8 18 250.8 3.988 161 3 10 83 34 31 87(0%)
7 877 10 21 113.2 8.836 882 5 54 538 183 102 469(0%)
8 4,140 13 24 100.5 9.954 4,100 32 1,416 1,223 652 777 2,628(1%)

Table IV. Frequency/Resources Used to Realize the Multistage Index to Set Partition Converter on the Altera
Stratix IV EP4SE530F43C3NES FPGA

# Set In Out # # LUTs With Various # of Inputs Estimated
Par- # # Freq. Delay Comb # of Pac-

n titions Bits Bits (MHz) (ns) Fnc 7- 6- 5- 4- 3- ked ALMs

5 52 6 15 403.5 2.478 57 0 4 19 20 14 35(0%)
6 203 8 18 275.0 3.636 100 1 7 36 38 18 63(0%)
7 877 10 21 227.8 4.389 203 0 8 82 71 42 121(0%)
8 4,140 13 24 203.0 4.926 326 3 20 124 107 72 196(0%)

16 1.05 × 1010 34 64 101.4 9.859 3,842 35 718 1,524 1,130 435 2,339(0%)
32 1.28 × 1026 88 160 55.6 17.973 38,305 87 3,671 19,768 8,016 6,763 21,206(9%)

number of combinational functions used in the realization. This is an overall measure
of the logic resources used; it is generated in the first step of the synthesis, prior to the
technology mapping process. The eighth through 12fth columns show the number of
the various lookup tables (LUTs) that were used. The 13th (rightmost) column shows
the estimated number of packed ALMs used in the realization, along with the percent-
age this represents of the total available. Because of the large number of partitions,
for moderate n (e.g., n ≥ 32), it will be too time consuming to enumerate all partitions
at typical FPGA clock frequencies (e.g., 100MHz). However, such designs are useful in
understanding the complexity/delay of these circuits. For index to set partition gener-
ators, however, even large n is useful. For example, in Monte Carlo simulations, the
index is a random number that can be any of a large set of input values.

Table III shows the FPGA resources and frequency achieved on the Altera Stratix IV
EP4SE530F43C3NES FPGA by the single-stage combinational logic index to set par-
tition converter shown in Figure 3. As discussed, this has short delay paths. This is
indicated by the column labeled “Freq. (MHz),” which has a relatively shallow decline
as n, the number of elements, increases. Also, as discussed, this circuit has high com-
plexity. This can be seen in Table III by the near fivefold increase in the values in the
column labeled “# Comb Fnc” (number of combinational logic circuits) and by the nearly
fivefold increase in the values in the column labeled “# Estimated Number of Packed
ALMs” as n increases by 1. For the single-stage circuit, it was possible to achieve an n
of only 8, which is significantly smaller than the values of n achieved for the sequential
and multistage circuits. In comparing the delay of the single-stage combinational logic
index to the set partition converter as shown in Figure 3 with the multistage circuit
as shown in Figure 4, it is important to recall that, unlike the multistage circuit, the
single-stage circuit is not pipelined. Thus, the multistage circuit achieves a higher clock
speed. However, its latency is larger.

Table IV shows the FPGA resources and frequency achieved on the Altera Stratix
IV EP4SE530F43C3NES FPGA by the multistage index to set partition circuit shown
in Figure 4. This uses fewer resources than the single-stage circuit in Figure 3, but its
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Table V. Integer Partitions on n = 8 Versus Their Index i

i Partition

0 1 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1 -
2 2 2 1 1 1 1 - -
3 2 2 2 1 1 - - -
4 2 2 2 2 - - - -
5 3 1 1 1 1 1 - -
6 3 2 1 1 1 - - -
7 3 2 2 1 - - - -
8 3 3 1 1 - - - -
9 3 3 2 - - - - -
10 4 1 1 1 1 - - -
11 4 2 1 1 - - - -
12 4 2 2 - - - - -
13 4 3 1 - - - - -
14 4 4 - - - - - -
15 5 1 1 1 - - - -
16 5 2 1 - - - - -
17 5 3 - - - - - -
18 6 1 1 - - - - -
19 6 2 - - - - - -
20 7 1 - - - - - -
21 8 - - - - - - -

latency is greater. In the design of the multistage circuit, registers were placed between
each stage. As a result, the delay figures shown are reduced, approximating the delay
of one stage. The first index comes out of this circuit in n − 1 clock periods.

The data shown comes from Verilog code that was written to implement each of the
three circuit types. Synplify Pro was used to design each circuit. Further, ModelSim
was used to simulate each circuit. In the case of the multistage circuit, a MATLAB
program was written to produce a header file that was called from the Verilog code to
provide threshold values for the comparators.

3. INTEGER PARTITIONS

3.1. Introduction

In this section, we show how to generate integer partitions at a rate of one per clock.
Because there are many fewer integer partitions than set partitions, an efficient way
to generate integer partitions is to precompute them, assign an index, and use a lookup
table. However, we are motivated to develop a general strategy for the hardware de-
sign of circuits that produce combinatorial objects at a rate of one per clock [Butler
and Sasao 2013a]. Specifically, we show that there exists a tree-like structure that
represents integer partitions that is analogous to the partition tree for set partitions.
Interestingly, its hardware realization is a cascade of individual blocks, similar to the
circuit realization of the set partition generator.

Definition 3.4. A nonincreasing sequence of positive integers λ = (λ1, λ2, . . . , λk) is
an integer partition of n if

∑k
i=1 λi = n.

An integer partition can be viewed as an unordered partition of a set of identical objects.
Unordered refers to the fact that order does not distinguish two otherwise equivalent
collections of subsets. For example, Table V shows the 22 integer partitions of 8. Since
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order is unimportant, we choose a lexicographical ordering, where the largest part is
leftmost and the smallest rightmost. In this way, we can index the partitions by index
i, as shown in Table V.

Each partition can be expressed as eight 4-bit numbers, each capable of realizing a
quantity between 8 and 0 (0 is a placeholder, representing - (dash) in Table V). Fewer
bits are possible. For example, the rightmost part has a maximum value of 1, which
requires only one bit to represent. In this case, the application must tolerate different
numbers of bits for the different parts. In this article, we choose all parts to have the
same number of bits. The circuit we seek for n = 8, therefore, has eight 4-bit parts, for
a total of 32 bits. If the end use of the circuit is a partition for printing (e.g., to ASCII),
then one is likely to want the same number of bits to represent each part. If storage is
limited, then the smallest needed word widths can be used. In this case, only 15 bits
are needed. This follows from the observation that the eight possible parts need, from
left to right, 4, 3, 2, 2, 1, 1, 1, and 1 bits to represent the maximum value within the
corresponding part. Thus, a total of 15 bits is needed. Further, it has a 5-bit input, and
thus, it is capable of realizing an index from 0 to 21. The circuit produces a partition
as a function of the index i, where 0 ≤ i < 22, as shown in Table V.

One way to generate all integer partitions is to generate all 32-bit binary numbers, at
a rate of one per clock, discarding those that are not integer partitions on n. However,
only 22 of the 232 32-bit numbers or 0.0000005% are integer partitions. Therefore, this
produces integer partitions at a rate that is much slower than one partition per clock.
We seek a circuit that produces one integer partition per clock.

3.2. The Partition Diagram

3.2.1. Introduction. In designing the index to set partition converter, we used the set
partition tree. In a similar way, we design a hardware index to integer partition gener-
ator using a partition diagram. This adapts a data structure introduced in Lin [2006]
to store all partitions of an integer n.

Definition 3.5. The (integer) partition diagram for n consists of three types of
nodes:

(1) a root node labeled (−, n),
(2) internal nodes labeled (y, Y ), where y corresponds to a part in a partition of mand

Y = m− y, the remainder when y is subtracted from m, and
(3) terminal nodes labeled (y, 0), where y is the final (and smallest) part of a partition

of n,

and one type of edge:

(1) a directed edge connects a node (x, m) to a node (y, p) iff m = y + p, x ≥ y, and
m ≥ y. No edge extends from a terminal node.

In the partition diagram for n, an integer partition is represented by a directed path
from the root node to a terminal node. Each node in a path generates a part of the
partition. Each directed edge goes from a source node to a sink node, where the source
node expresses the current part p in a partition on n, and the sink node is the root node
of a partition diagram for partitions on n − p. In our version of the partition diagram,
the largest parts occur first at the root node on the left and the smallest part occurs
at the terminal nodes on the right. A node appears at some level if its part value and
remaining sum value can exist at that level. This specification aids the understanding
of the design methodology. Therefore, two identically labeled nodes may exist at two or
more different levels. For example, in Figure 5, the node (1, 3) exists at levels 2, 3, 4,
and 5.
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Fig. 5. Example of a partition diagram for integer partitions on n = 8.

Fig. 6. One stage of the partition generator.

Example 3.2. Figure 5 shows the partition diagram for n = 8. On the left is a node
that represents 8, while all subsequent nodes represent some part in a partition of n.
For example, following the topmost paths yields the partition {1 1 1 1 1 1 1 1}. Following
the bottom path yields the partition {8 − − − − − − −}.

The values of the input index are shown as labels of the edges from the root node
to its eight daughter nodes. For example, the edge labeled 0 from the root node is the
beginning of the path corresponding to the partition {1 1 1 1 1 1 1 1}. From Table V,
this partition has an index of 0. From Figure 5, it can be seen that all partitions that
begin with 2 have index 1 to 4, all that begin with 3 have index 5 to 9, and so forth.
This can be checked by comparing Figure 5 with Table V.

3.2.2. Circuit Implementation. We propose a circuit that is an implementation of the
partition diagram, which produces an integer partition on n from an index.
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Table VI. Comparison of the Computation Times for a Single-Integer Partition on an Altera Stratix IV IV
EP4SE530F43C3NES Versus a Xeon Microprocessor

# parti- FPGA FPGA Xeon
n -tions Freq (MHz) time (ns) time (ns) Speed-up

3 3 401.0 2.5 1,067 427
4 5 401.0 2.5 1,680 672
5 7 297.4 3.4 2,743 816
6 11 249.3 4.0 4,400 1,100
7 15 249.6 4.0 7,280 1,820
8 22 136.7 7.3 11,091 1,516
9 30 133.5 7.5 17,253 2,303
10 42 115.7 8.6 25,829 2,988
11 56 111.8 8.9 38,821 4,340
12 77 93.0 10.8 55,725 5,182
13 101 84.3 11.9 80,990 6,827
14 135 70.5 14.2 113,526 8,004

Figure 6 shows one stage of the partition generator. There are three inputs, the index,
n, and the partition. The internal block labeled F computes a value by which to reduce
the index and subtracts that to produce the output index. It is an implementation of a
part of the partition diagram, an example of which is shown in Figure 5. That is, each
block in Figure 5 realizes that part of the partition diagram directly above the block.
Specifically, it computes a value by which to reduce n and subtracts that to produce the
output n. This reduction is precisely the new part produced by this stage, and that is
also applied to the output partition. All other parts of the partition are unchanged. This
is indicated by the shaded line across the internal block in Figure 6. In determining the
new part from this stage, the internal block chooses that new part value to be less than
or equal to the input n and less than or equal to the last part produced, as indicated by
the input partition. The input index determines the new part value.

3.2.3. Results. A Verilog program was written to implement the index to integer par-
tition converter described previously. The target technology was chosen as the Altera
Stratix IV EP4SE530F43C3NES. Table VI compares the rate of processing partitions
on this FPGA with the rate of an Intel Xeon microprocessor running at 2.8GHz with
512KB L2 cache and 1GB of memory. The data shown is from a C program that com-
putes all integer partitions. It implements McKay’s Partition Generator [McKay 1965],
which generates integer partitions in lexicographical order beginning with 111 . . . 1.
We compare this with Verilog code that runs at the frequency specified by Synplify Pro.
Table VI shows the comparison, and the potential speedup as measured by the Xeon
time divided by the Stratix IV time. For example, for 14-element partitions, the FPGA
achieves a speedup of 8, 004× over the Xeon microprocessor.

Because the system’s clock function provides only a crude measure of elapsed time
when small time differences are computed, we repeatedly (redundantly) did the compu-
tations for many iterations on the Xeon microprocessor and divided the time durations
by the number of iterations. For each n in Table VI, we chose 25,000 iterations.

3.2.4. Complexity of Implementation. Table VII shows the resource usage. This data comes
from the Synopsys logic design tool, Synplify Pro, in which the FPGA chosen is the
Altera Stratix IV EP4SE530F43C3NES.

The first column in Table VII shows n. The second column shows the frequency
achieved. The third through seventh columns show how many LUTs are used in the
implementation, while the eighth column shows the number of packed ALMs used.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 28, Publication date: December 2014.



High-Speed Hardware Partition Generation 28:15

Table VII. Frequency and Resources Used to Realize the Index to Integer Partition Implementation on the Altera
Stratix IV EP4SE530F43C3NES FPGA

# of # LUTs With Various # of Inputs Estimated Total
Freq. Comb # of Pac- # of

n (MHz) Fnc 7- 6- 5- 4- 3- ked ALMs Registers

3 401.0 8 0 0 0 2 6 7 (0%) 13 (0%)
4 401.0 39 0 4 14 9 12 30 (0%) 33 (0%)
5 297.4 84 0 3 43 23 15 55 (0%) 51 (0%)
6 249.3 182 3 11 104 37 27 116 (0%) 77 (0%)
7 249.6 200 3 13 120 43 21 135 (0%) 95 (0%)
8 136.7 724 7 43 436 164 74 427 (0%) 167 (0%)
9 133.5 1,025 13 69 611 242 90 595 (0%) 179 (0%)
10 115.7 1,623 25 200 867 371 160 955 (0%) 196 (0%)
11 111.8 2,073 29 306 1,081 459 198 1,218 (0%) 207 (0%)
12 93.0 3,262 45 551 1,473 744 449 1,921 (0%) 247 (0%)
13 84.3 4,229 40 839 1,837 921 592 2,525 (0%) 276 (0%)
14 70.5 6,019 45 1,120 2,618 1,293 943 3,548 (1%) 319 (0%)

The ninth column shows the number of registers used. The last two columns show the
percentage of available resources used. It is clear from this table that relatively few
resources are used.

4. CONCLUDING REMARKS

The generation of set and integer partitions by hardware has important practical appli-
cations. The challenge is to generate these partitions at a rate of one per clock period.
For set partitions, we show two ways to accomplish this. The first is a sequential cir-
cuit that generates the partitions in lexicographical order according to their restricted
growth string. This circuit can produce partitions of large sets. The second circuit is an
index to set partition converter. In this circuit, an up counter on the index input pro-
duces set partitions in increasing lexicographical order, while a down counter produces
set partitions in decreasing lexicographical order. Also, a random number generator
at the index produces random set partitions. This is useful for Monte Carlo simula-
tions involving partitions. It is combinational but can be pipelined to produce a set
partition at a rate of one per clock. An analysis of the complexity of these two circuits
shows that the complexity of both grow polynomially with n, the number of elements
in the partition, while the delay grows linearly with n. Also, for both circuits, we show
experimental results from the Synopsys logic design tool, Synplify Pro, to show the
FPGA resources used. Specifically, small to large circuits were modeled on the Altera
Stratix IV EP4SE530F43C3NES FPGA. Our experimental results show that an FPGA
running at 100MHz produces partitions at a rate that is about 10 times the rate of a
software-implemented partition generator on a processor that runs at 2.26GHz.

Second, we show an index to integer partition converter that can produce partitions
in various orders, for example, lexicographically and randomly. As in the case of set
partitions, we demonstrate that there is a data structure, in this case, the partition
diagram, that allows the design of a circuit that generates an integer partition at a rate
of one per clock. Both the partition tree (for set partitions) and the partition diagram
(for integer partitions) are tree data structures. In the two cases, they are essential
in deriving the partition-generating circuit. Experimental analysis using Synplify Pro
shows that it is also efficient compared to the software generation of integer partitions.
Specifically, our hardware achieves an 8,000 times speedup compared to a software
implementation.
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Table VIII. Comparison of the Circuits Presented in This Article

Circuit Complexity Delay

Set partitions

Sequential Simple Medium
Single stage High Small
Multi state Medium Medium

Integer partitions

Multi stage Medium Medium

Table VIII summarizes the circuits presented in this article with respect to complex-
ity and delay.

There are many avenues for future work. Especially, there is a need for hardware
generation of set partitions with restrictions on the size and number of blocks and on
integer partitions with distinct parts, with odd parts, with even parts, and so forth. An
interesting survey on integer partitions [Wilf 2000] provides a starting point. Another
extension is to investigate the simultaneous implementation of more than one hard-
ware generator on one or more FPGAs. It would be interesting to compare this with a
parallel software generation program on a cluster and/or GPU computer.
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Boolean functions by reconfigurable computer. In Proceedings of the 18th Annual International IEEE
Symposium on Field-Programmable Custom Computing Machines. 265–272.
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